A Study on Real-time Detection of Rice Diseases in Farmlands Based on Multi-dimensional Data Fusion

To meet the need of crop leaf disease detection in complex scenarios, this study designs a method based on the computing power of mobile devices that ensures both detection accuracy and real-time efficiency, offering significant practical application value. Based on a comparison with existing mainst...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - (2025) vom: 01. Jan.
1. Verfasser: Ye, Wei (VerfasserIn)
Weitere Verfasser: Jiang, Fei, Li, Zhaoxing, Zhao, Lei, Wang, Jiaoyu, Wang, Hongkai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Attention Mechanism Deep Learning Multi-dimensional Feature Fusion Object Detection YOLOv5
LEADER 01000naa a22002652 4500
001 NLM382296753
003 DE-627
005 20250102232356.0
007 cr uuu---uuuuu
008 250102s2025 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-08-24-1685-RE  |2 doi 
028 5 2 |a pubmed24n1649.xml 
035 |a (DE-627)NLM382296753 
035 |a (NLM)39743700 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Wei  |e verfasserin  |4 aut 
245 1 2 |a A Study on Real-time Detection of Rice Diseases in Farmlands Based on Multi-dimensional Data Fusion 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a To meet the need of crop leaf disease detection in complex scenarios, this study designs a method based on the computing power of mobile devices that ensures both detection accuracy and real-time efficiency, offering significant practical application value. Based on a comparison with existing mainstream detection models, this paper proposes a target detection and recognition algorithm, TG_YOLOv5, which utilizes multi-dimensional data fusion on the YOLOv5 model. The triplet attention mechanism and C3CBAM module are incorporated into the network structure to capture connections between spatial and channel dimensions of input feature maps, thereby enhancing the model's feature extraction capabilities without significantly increasing the parameter count. The GhostConv lightweight module is used to construct the backbone network, reducing model complexity, shrinking the model size, and improving detection speed. A self-constructed rice leaf disease dataset is used for experimentation. Results show that TG_YOLOv5 achieves a mean Average Precision (mAP) of 98.3% and a recall rate of 97.2%, representing a 1.2% improvement in mAP and a 4.3% improvement in recall over the traditional YOLOv5 algorithm. The trained lightweight model is then deployed on a Raspberry Pi using the MNN engine for acceleration, showing a 73.8% increase in detection speed across models after MNN acceleration. Additionally, this model achieves satisfactory detection accuracy and speed on apple and tomato datasets, validating its generalization ability. This research provides a theoretical foundation for remote real-time detection of rice diseases in agriculture 
650 4 |a Journal Article 
650 4 |a Attention Mechanism 
650 4 |a Deep Learning 
650 4 |a Multi-dimensional Feature Fusion 
650 4 |a Object Detection 
650 4 |a YOLOv5 
700 1 |a Jiang, Fei  |e verfasserin  |4 aut 
700 1 |a Li, Zhaoxing  |e verfasserin  |4 aut 
700 1 |a Zhao, Lei  |e verfasserin  |4 aut 
700 1 |a Wang, Jiaoyu  |e verfasserin  |4 aut 
700 1 |a Wang, Hongkai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g (2025) vom: 01. Jan.  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g year:2025  |g day:01  |g month:01 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-08-24-1685-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2025  |b 01  |c 01