Use of rotating membranes for air-to-liquid mass transfer of carbon dioxide to enhance algal growth

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO2) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - (2024) vom: 31. Dez., Seite 1-19
1. Verfasser: Obidi, Peter Ofuje (VerfasserIn)
Weitere Verfasser: Lunka, Alex A, Fallahi, Alireza, Bayless, David J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Algal growth carbon dioxide capture mass transfer techno-economic analysis wetted rotating membranes
LEADER 01000naa a22002652 4500
001 NLM382238826
003 DE-627
005 20241231232442.0
007 cr uuu---uuuuu
008 241231s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2024.2445328  |2 doi 
028 5 2 |a pubmed24n1647.xml 
035 |a (DE-627)NLM382238826 
035 |a (NLM)39737910 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Obidi, Peter Ofuje  |e verfasserin  |4 aut 
245 1 0 |a Use of rotating membranes for air-to-liquid mass transfer of carbon dioxide to enhance algal growth 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO2) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.64 m and loop size of 2 to 5 m, with rotational speeds between 0.0 and 0.78 m/s. CO2 flux increased by up to 45%, achieving maximum uptake rate of 9.14 mg CO2/min/m2 at 100% speed. An empirical model was developed to predict mass transfer rates under varying operational conditions, and model validation showed a strong correlation with experimental data (R2 = 0.9668). Preliminary techno-economic analysis estimated that scaling the system to meet the CO2 demands of a hypothetical 500,000 L raceway, 915 membranes would be required, utilising ∼223 m2 (13.4%) of 1667 m2 surface area, assuming a 0.3 m depth, 12 g/m2/day growth rate, and algae with 50% carbon by weight. The system's energy consumption was measured at 17.1 J/g CO2 captured, representing a 90% reduction in power usage compared to conventional sparging systems, which typically require ∼627 W per 8.3 m2 of membrane surface area. Based solely on electricity costs of $0.10/kW-hr, the cost of capturing atmospheric CO2 was estimated at $1550 per ton. This marks a significant improvement over existing technologies, enhancing commercial viability. Future work will validate the system with Chlorella vulgaris and scale to optimise CO2 capture and reduce costs 
650 4 |a Journal Article 
650 4 |a Algal growth 
650 4 |a carbon dioxide capture 
650 4 |a mass transfer 
650 4 |a techno-economic analysis 
650 4 |a wetted rotating membranes 
700 1 |a Lunka, Alex A  |e verfasserin  |4 aut 
700 1 |a Fallahi, Alireza  |e verfasserin  |4 aut 
700 1 |a Bayless, David J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g (2024) vom: 31. Dez., Seite 1-19  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnns 
773 1 8 |g year:2024  |g day:31  |g month:12  |g pages:1-19 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2024.2445328  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 31  |c 12  |h 1-19