Using Data-Science Approaches to Unravel Insights for Enhanced Transport of Lithium Ions in Single-Ion Conducting Polymer Electrolytes

© 2024 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 36(2024), 24 vom: 24. Dez., Seite 11934-11946
1. Verfasser: Zhu, Qinyu (VerfasserIn)
Weitere Verfasser: Liu, Yifan, Shepard, Lauren B, Bhattacharya, Debjyoti, Sinnott, Susan B, Reinhart, Wesley F, Cooper, Valentino R, Kumar, Rajeev
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2024 The Authors. Published by American Chemical Society.
Solid polymer electrolytes have yet to achieve the desired ionic conductivity (>1 mS/cm) near room temperature required for many applications. This target implies the need to reduce the effective energy barriers for ion transport in polymer electrolytes to around 20 kJ/mol. In this work, we combine information extracted from existing experimental results with theoretical calculations to provide insights into ion transport in single-ion conductors (SICs) with a focus on lithium ion SICs. Through the analysis of temperature-dependent ionic conductivity data obtained from the literature, we evaluate different methods of extracting energy barriers for lithium transport. The traditional Arrhenius fit to the temperature-dependent ionic conductivity data indicates that the Meyer-Neldel rule holds for SICs. However, the values of the fitting parameters remain unphysical. Our modified approach based on recent work (Macromolecules 2023, 56, 15, 6051), which incorporates a fixed pre-exponential factor, reveals that the energy barriers exhibit temperature dependence over a wide range of temperatures. Using this approach, we identify anions leading to the energy barriers <30 kJ/mol, which include trifluoromethane sulfonimide (TFSI), fluoromethane sulfonimide (FSI), and boron-based organic anions. In our efforts to design the next generation of anions, which can exhibit the energy barriers <20 kJ/mol, we have performed density functional theory (DFT) based calculations to connect the chemical structures of boron-based anions via the binding energy of cation (lithium)-anion pairs with the experimentally derived effective energy barriers for ion hopping. Not only have we identified a correlation between the binding energy and the energy barriers, but we also propose a strategy to design new boron-based anions by using the correlation. This combined approach involving experiments and theoretical calculations is capable of facilitating the identification of promising new anions, which can exhibit ionic conductivity >1 mS/cm near room temperature, thereby expediting the development of novel superionic single-ion conducting polymer electrolytes
Beschreibung:Date Revised 04.01.2025
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.4c02432