The Structure-Mechanics Relationship of Bamboo-Epidermis and Inspired Composite Design by Artificial Intelligence

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 27. Dez., Seite e2414970
1. Verfasser: Qin, Zhao (VerfasserIn)
Weitere Verfasser: Destree, Aymeric Pierre
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bamboo epidermis bio‐inspired design deep convolutional generative adversarial networks fracture toughness particle‐reinforced composite
LEADER 01000caa a22002652c 4500
001 NLM382123220
003 DE-627
005 20250307024515.0
007 cr uuu---uuuuu
008 241227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202414970  |2 doi 
028 5 2 |a pubmed25n1272.xml 
035 |a (DE-627)NLM382123220 
035 |a (NLM)39726349 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qin, Zhao  |e verfasserin  |4 aut 
245 1 4 |a The Structure-Mechanics Relationship of Bamboo-Epidermis and Inspired Composite Design by Artificial Intelligence 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions. Still, the mechanism is unclear, especially for how the low silica concentration (<10%) can effectively reinforce the layer and prevent the inner fibers from splitting. Here, theoretical analysis is combined with experimental imaging and 3D printing to investigate the effect of the distribution of silica particles on composite mechanics. The anisotropic partial distribution function of silica particles in bamboo skin yields higher toughness (>10%) than randomly distributed particles. A generative artificial intelligence (AI) model inspired by bamboo epidermis is developed to generate particle-reinforced composites. Besides the visual similarity, it is found that the samples by the generative model show failure processes and fracture toughness identical to the actual bamboo epidermis. This work reveals the micromechanics of the bamboo epidermis. It illustrates that generative AI can help design bio-inspired composites of a complex structure that cannot be uniformly represented by a simple building block or optimized around local boundaries. It expands the design space of particle-reinforced composites for enhanced toughness modulus, offering advantages in industries where mechanical reliability is critical 
650 4 |a Journal Article 
650 4 |a bamboo epidermis 
650 4 |a bio‐inspired design 
650 4 |a deep convolutional generative adversarial networks 
650 4 |a fracture toughness 
650 4 |a particle‐reinforced composite 
700 1 |a Destree, Aymeric Pierre  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 27. Dez., Seite e2414970  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2024  |g day:27  |g month:12  |g pages:e2414970 
856 4 0 |u http://dx.doi.org/10.1002/adma.202414970  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 27  |c 12  |h e2414970