Nitrogen Deposition Weakens Soil Carbon Control of Nitrogen Dynamics Across the Contiguous United States

© 2024 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 12 vom: 26. Dez., Seite e70016
1. Verfasser: Nieland, Matthew A (VerfasserIn)
Weitere Verfasser: Lacy, Piper, Allison, Steven D, Bhatnagar, Jennifer M, Doroski, Danica A, Frey, Serita D, Greaney, Kristen, Hobbie, Sarah E, Kuebbing, Sara E, Lewis, David B, McDaniel, Marshall D, Perakis, Steven S, Raciti, Steve M, Shaw, Alanna N, Sprunger, Christine D, Strickland, Michael S, Templer, Pamela H, Vietorisz, Corinne, Ward, Elisabeth B, Keiser, Ashley D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article COVID‐19 air quality coupled carbon–nitrogen extracellular enzyme activity net nitrification net nitrogen mineralization Soil Carbon 7440-44-0 mehr... Nitrogen N762921K75
LEADER 01000caa a22002652c 4500
001 NLM382121260
003 DE-627
005 20250307024457.0
007 cr uuu---uuuuu
008 241227s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.70016  |2 doi 
028 5 2 |a pubmed25n1272.xml 
035 |a (DE-627)NLM382121260 
035 |a (NLM)39726151 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nieland, Matthew A  |e verfasserin  |4 aut 
245 1 0 |a Nitrogen Deposition Weakens Soil Carbon Control of Nitrogen Dynamics Across the Contiguous United States 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.12.2024 
500 |a Date Revised 27.12.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 John Wiley & Sons Ltd. 
520 |a Anthropogenic nitrogen (N) deposition is unequally distributed across space and time, with inputs to terrestrial ecosystems impacted by industry regulations and variations in human activity. Soil carbon (C) content normally controls the fraction of mineralized N that is nitrified (ƒnitrified), affecting N bioavailability for plants and microbes. However, it is unknown whether N deposition has modified the relationships among soil C, net N mineralization, and net nitrification. To test whether N deposition alters the relationship between soil C and net N transformations, we collected soils from coniferous and deciduous forests, grasslands, and residential yards in 14 regions across the contiguous United States that vary in N deposition rates. We quantified rates of net nitrification and N mineralization, soil chemistry (soil C, N, and pH), and microbial biomass and function (as beta-glucosidase (BG) and N-acetylglucosaminidase (NAG) activity) across these regions. Following expectations, soil C was a driver of ƒnitrified across regions, whereby increasing soil C resulted in a decline in net nitrification and ƒnitrified. The ƒnitrified value increased with lower microbial enzymatic investment in N acquisition (increasing BG:NAG ratio) and lower active microbial biomass, providing some evidence that heterotrophic microbial N demand controls the ammonium pool for nitrifiers. However, higher total N deposition increased ƒnitrified, including for high soil C sites predicted to have low ƒnitrified, which decreased the role of soil C as a predictor of ƒnitrified. Notably, the drop in contemporary atmospheric N deposition rates during the 2020 COVID-19 pandemic did not weaken the effect of N deposition on relationships between soil C and ƒnitrified. Our results suggest that N deposition can disrupt the relationship between soil C and net N transformations, with this change potentially explained by weaker microbial competition for N. Therefore, past N inputs and soil C should be used together to predict N dynamics across terrestrial ecosystems 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a air quality 
650 4 |a coupled carbon–nitrogen 
650 4 |a extracellular enzyme activity 
650 4 |a net nitrification 
650 4 |a net nitrogen mineralization 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Lacy, Piper  |e verfasserin  |4 aut 
700 1 |a Allison, Steven D  |e verfasserin  |4 aut 
700 1 |a Bhatnagar, Jennifer M  |e verfasserin  |4 aut 
700 1 |a Doroski, Danica A  |e verfasserin  |4 aut 
700 1 |a Frey, Serita D  |e verfasserin  |4 aut 
700 1 |a Greaney, Kristen  |e verfasserin  |4 aut 
700 1 |a Hobbie, Sarah E  |e verfasserin  |4 aut 
700 1 |a Kuebbing, Sara E  |e verfasserin  |4 aut 
700 1 |a Lewis, David B  |e verfasserin  |4 aut 
700 1 |a McDaniel, Marshall D  |e verfasserin  |4 aut 
700 1 |a Perakis, Steven S  |e verfasserin  |4 aut 
700 1 |a Raciti, Steve M  |e verfasserin  |4 aut 
700 1 |a Shaw, Alanna N  |e verfasserin  |4 aut 
700 1 |a Sprunger, Christine D  |e verfasserin  |4 aut 
700 1 |a Strickland, Michael S  |e verfasserin  |4 aut 
700 1 |a Templer, Pamela H  |e verfasserin  |4 aut 
700 1 |a Vietorisz, Corinne  |e verfasserin  |4 aut 
700 1 |a Ward, Elisabeth B  |e verfasserin  |4 aut 
700 1 |a Keiser, Ashley D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 30(2024), 12 vom: 26. Dez., Seite e70016  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:12  |g day:26  |g month:12  |g pages:e70016 
856 4 0 |u http://dx.doi.org/10.1111/gcb.70016  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 12  |b 26  |c 12  |h e70016