Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules

© 2024 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 46(2025), 1 vom: 05. Jan., Seite e27524
1. Verfasser: Palmer, C Zachary (VerfasserIn)
Weitere Verfasser: Firth, Rebecca A, Fortenberry, Ryan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article atmospheric chemistry computational benchmarking interdisciplinary astronomy interstellar chemistry molecular spectroscopic constants
LEADER 01000caa a22002652c 4500
001 NLM38197376X
003 DE-627
005 20250307022321.0
007 cr uuu---uuuuu
008 241223s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27524  |2 doi 
028 5 2 |a pubmed25n1272.xml 
035 |a (DE-627)NLM38197376X 
035 |a (NLM)39711372 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Palmer, C Zachary  |e verfasserin  |4 aut 
245 1 0 |a Computing Accurate & Reliable Rovibrational Spectral Data for Aluminum-Bearing Molecules 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.12.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley Periodicals LLC. 
520 |a The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)-F12b/cc-pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)-F12b/cc-pVTZ for the cubic and quartic terms: the F12-TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data. Unfortunately, current methods for the computation of rovibrational spectral data have been shown previously to exhibit large errors for aluminum-containing molecules. In this work, ten different methods are benchmarked to determine a method to produce experimentally-accurate rovibrational data for theorized aluminum species. Of the benchmarked methods, the explicitly correlated, hybrid F12-TcCR+TZ QFF consistently produces the most accurate results compared to both gas-phase and Ar-matrix experimental data. This method combines the accuracy of the composite F12-TcCR energies along with the numerical stability of non-composite anharmonic terms where the non-rigid nature of aluminum bonding can be sufficiently treated 
650 4 |a Journal Article 
650 4 |a atmospheric chemistry 
650 4 |a computational benchmarking 
650 4 |a interdisciplinary astronomy 
650 4 |a interstellar chemistry 
650 4 |a molecular spectroscopic constants 
700 1 |a Firth, Rebecca A  |e verfasserin  |4 aut 
700 1 |a Fortenberry, Ryan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 46(2025), 1 vom: 05. Jan., Seite e27524  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:46  |g year:2025  |g number:1  |g day:05  |g month:01  |g pages:e27524 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27524  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2025  |e 1  |b 05  |c 01  |h e27524