Multidirectional Sliding Ferroelectricity of Rhombohedral-Stacked InSe for Reconfigurable Photovoltaics and Imaging Applications
© 2024 Wiley‐VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 7 vom: 20. Feb., Seite e2416117 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2025
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article 2D materials bulk photovoltaic effect photodetection sliding ferroelectricity van der Waals heterostructures γ‐InSe |
Résumé: | © 2024 Wiley‐VCH GmbH. Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy. The graphene/γ-InSe/graphene tunneling device exhibits a tunable bulk photovoltaic effect with a photovoltaic current density of ≈15 mA cm-2 due to multiple polarization states. The generation of dome-like domain walls is observed experimentally, which is attributed to the multidirectional sliding-induced domains based on the theoretical calculations. Furthermore, the ferroelectric polarization in γ-InSe ensures that the tunneling device has a high photo responsivity of ≈255 A W-1 and a fast response time for real-time imaging. The work not only provides insights into the multidirectional sliding ferroelectricity of rhombohedral-stacked 2D materials but also highlights their potential for tunable photovoltaics and imaging applications |
---|---|
Description: | Date Revised 19.02.2025 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202416117 |