ECCDN-Net : A deep learning-based technique for efficient organic and recyclable waste classification

Copyright © 2024 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 193(2025) vom: 01. Feb., Seite 363-375
1. Verfasser: Islam, Md Sakib Bin (VerfasserIn)
Weitere Verfasser: Sumon, Md Shaheenur Islam, Majid, Molla E, Abul Kashem, Saad Bin, Nashbat, Mohammad, Ashraf, Azad, Khandakar, Amith, Kunju, Ali K Ansaruddin, Hasan-Zia, Mazhar, Chowdhury, Muhammad E H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Deep Learning Environmental Harm Image Categorization Sustainable Progress Trash Classification Waste Management
LEADER 01000caa a22002652c 4500
001 NLM381918882
003 DE-627
005 20250509162550.0
007 cr uuu---uuuuu
008 241222s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2024.12.023  |2 doi 
028 5 2 |a pubmed25n1389.xml 
035 |a (DE-627)NLM381918882 
035 |a (NLM)39705887 
035 |a (PII)S0956-053X(24)00656-1 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Islam, Md Sakib Bin  |e verfasserin  |4 aut 
245 1 0 |a ECCDN-Net  |b A deep learning-based technique for efficient organic and recyclable waste classification 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.04.2025 
500 |a Date Revised 28.04.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2024 Elsevier Ltd. All rights reserved. 
520 |a Efficient waste management is essential to minimizing environmental harm as well as encouraging sustainable progress. The escalating volume and sophistication of waste present significant challenges, prompting innovative methods for effective waste categorization and management. Deep learning models have become highly intriguing tools for automating trash categorization activities, providing effective ways to optimize processes for handling waste. Ourwork presents a novel deep learning method for trash classification, with the goal to improve the accuracy, also efficiency of garbage image categorization. We examined the effectiveness of several pre-trained models, such as InceptionV2, Densenet201, MobileNet v2, and Resnet18, using objective evaluation and cross-validation. We proposed an Eco Cycle Classifier Deep Neural Network (ECCDN-Net) model that is particularly built for the categorization of waste images. ECCDN-Net utilizes the advantageous qualities of Densenet201 and Resnet18 by merging their capacities to extract features, enhanced with auxiliary outputs to optimize the classification procedure. The set of imagesused in this study comprises 24,705 images that are divided into two distinct classes: Organic and Recyclable. The set allows extensive evaluation and training of deep learning models for waste classification of images tasks. Our research demonstrates that the ECCDN-Net model classifies waste images with 96.10% accuracy, outperforming other pre-trained models. Resnet18 had 92.68% accuracy, MobileNet v2 93.27%, Inception v3 94.77%, and Densenet201, a significant improvement, 95.98%. ECCDN-Net outperformed these models in waste image categorization with 96.10% accuracy. We ensure the reliability and generalizability of our methods throughout the dataset by integrating and cross-validating deep learning models. The current work introduces an innovative deep learning-based approach that has promising potential for waste categorization and management strategies 
650 4 |a Journal Article 
650 4 |a Deep Learning 
650 4 |a Environmental Harm 
650 4 |a Image Categorization 
650 4 |a Sustainable Progress 
650 4 |a Trash Classification 
650 4 |a Waste Management 
700 1 |a Sumon, Md Shaheenur Islam  |e verfasserin  |4 aut 
700 1 |a Majid, Molla E  |e verfasserin  |4 aut 
700 1 |a Abul Kashem, Saad Bin  |e verfasserin  |4 aut 
700 1 |a Nashbat, Mohammad  |e verfasserin  |4 aut 
700 1 |a Ashraf, Azad  |e verfasserin  |4 aut 
700 1 |a Khandakar, Amith  |e verfasserin  |4 aut 
700 1 |a Kunju, Ali K Ansaruddin  |e verfasserin  |4 aut 
700 1 |a Hasan-Zia, Mazhar  |e verfasserin  |4 aut 
700 1 |a Chowdhury, Muhammad E H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 193(2025) vom: 01. Feb., Seite 363-375  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:193  |g year:2025  |g day:01  |g month:02  |g pages:363-375 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2024.12.023  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 193  |j 2025  |b 01  |c 02  |h 363-375