SciAgents : Automating Scientific Discovery Through Bioinspired Multi-Agent Intelligent Graph Reasoning

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 18. Dez., Seite e2413523
1. Verfasser: Ghafarollahi, Alireza (VerfasserIn)
Weitere Verfasser: Buehler, Markus J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biological design bio‐inspired materials knowledge graph large language model materials design multi‐agent system natural language processing scientific AI
LEADER 01000caa a22002652c 4500
001 NLM381829286
003 DE-627
005 20250307020127.0
007 cr uuu---uuuuu
008 241219s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202413523  |2 doi 
028 5 2 |a pubmed25n1271.xml 
035 |a (DE-627)NLM381829286 
035 |a (NLM)39696898 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghafarollahi, Alireza  |e verfasserin  |4 aut 
245 1 0 |a SciAgents  |b Automating Scientific Discovery Through Bioinspired Multi-Agent Intelligent Graph Reasoning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a A key challenge in artificial intelligence (AI) is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, SciAgents, an approach that leverages three core concepts is presented: (1) large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses human research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the system yields material discoveries, critiques and improves existing hypotheses, retrieves up-to-date data about existing research, and highlights strengths and limitations. This is achieved by harnessing a "swarm of intelligence" similar to biological systems, providing new avenues for discovery. How this model accelerates the development of advanced materials by unlocking Nature's design principles, resulting in a new biocomposite with enhanced mechanical properties and improved sustainability through energy-efficient production is shown 
650 4 |a Journal Article 
650 4 |a biological design 
650 4 |a bio‐inspired materials 
650 4 |a knowledge graph 
650 4 |a large language model 
650 4 |a materials design 
650 4 |a multi‐agent system 
650 4 |a natural language processing 
650 4 |a scientific AI 
700 1 |a Buehler, Markus J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 18. Dez., Seite e2413523  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g year:2024  |g day:18  |g month:12  |g pages:e2413523 
856 4 0 |u http://dx.doi.org/10.1002/adma.202413523  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 18  |c 12  |h e2413523