AI-based plastic waste sorting method utilizing object detection models for enhanced classification

Copyright © 2024 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 193(2024) vom: 16. Dez., Seite 273-282
1. Verfasser: Son, Junhyeok (VerfasserIn)
Weitere Verfasser: Ahn, Yuchan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Artificial intelligence Classification Machine learning Mask R-CNN Plastic waste sorting method YOLO v8
LEADER 01000naa a22002652 4500
001 NLM381755231
003 DE-627
005 20241218232250.0
007 cr uuu---uuuuu
008 241218s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2024.12.014  |2 doi 
028 5 2 |a pubmed24n1635.xml 
035 |a (DE-627)NLM381755231 
035 |a (NLM)39689485 
035 |a (PII)S0956-053X(24)00646-9 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Son, Junhyeok  |e verfasserin  |4 aut 
245 1 0 |a AI-based plastic waste sorting method utilizing object detection models for enhanced classification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Copyright © 2024 Elsevier Ltd. All rights reserved. 
520 |a The export ban on plastic waste by China has brought domestic plastic recycling to the forefront of environmental concerns, with sorting being a crucial step in the recycling process. This study assessed the performance of advanced AI models, Mask R-CNN, and YOLO v8, in enhancing plastic waste sorting. The models were evaluated in terms of accuracy, mean average precision (mAP), precision, recall, F1 score, and inference time, with hyperparameter tuning performed through grid search. Mask R-CNN, with an accuracy of 0.912 and mAP of 0.911, outperformed YOLO v8 in tasks requiring detailed segmentation, despite a longer inference time of 200-350 ms. Conversely, YOLO v8, with an accuracy of 0.867 and mAP of 0.922, excelled in real-time applications owing to its shorter inference time of 80-160 ms. This study underscores the importance of selecting the appropriate model based on specific application requirements 
650 4 |a Journal Article 
650 4 |a Artificial intelligence 
650 4 |a Classification 
650 4 |a Machine learning 
650 4 |a Mask R-CNN 
650 4 |a Plastic waste sorting method 
650 4 |a YOLO v8 
700 1 |a Ahn, Yuchan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 193(2024) vom: 16. Dez., Seite 273-282  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnns 
773 1 8 |g volume:193  |g year:2024  |g day:16  |g month:12  |g pages:273-282 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2024.12.014  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 193  |j 2024  |b 16  |c 12  |h 273-282