|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM381625761 |
003 |
DE-627 |
005 |
20241216232611.0 |
007 |
cr uuu---uuuuu |
008 |
241216s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202414803
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1633.xml
|
035 |
|
|
|a (DE-627)NLM381625761
|
035 |
|
|
|a (NLM)39676493
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Gu, Miaoli
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Unveiling Charge Carrier Dynamics at Organic-Inorganic S-Scheme Heterojunction Interfaces
|b Insights From Advanced EPR
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 16.12.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Understanding charge carrier transfer at heterojunction interfaces is critical for advancing solar energy conversion technologies. This study utilizes continuous wave (CW), pulse, and time-resolved (TR) electron paramagnetic resonance (EPR) spectroscopy to explore the radical species formed at the TAPA (tris(4-aminophenyl)amine)-PDA (Terephthaldicarboxaldehyde)/ZnIn2S4 (TP/ZIS) heterojunction interface. CW and pulse EPR identify stable radical defects localized near the interface, accessible to water molecules. Time-resolved EPR reveals a photoinduced electron transfer from TP to ZIS, leading to the generation of spin-correlated radical pairs under light irradiation, signifying efficient charge carrier separation and spatial transfer within the S-scheme heterojunction. This electron transfer mechanism, confirmed through in situ X-ray photoelectron spectroscopy and femtosecond transient absorption spectroscopy, suppresses undesirable carrier recombination, extending charge carrier lifetimes. These findings provide novel insights into the transport direction of charge carriers at the S-scheme heterojunction interface, offering valuable guidance for designing highly efficient and stable organic-inorganic heterojunction photocatalysts for solar energy applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a EPR
|
650 |
|
4 |
|a S‐scheme heterojunction
|
650 |
|
4 |
|a extended carrier lifetime
|
650 |
|
4 |
|a interfacial charge transfer
|
650 |
|
4 |
|a organic–inorganic
|
700 |
1 |
|
|a Zhang, Jianjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kurganskii, Ivan V
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Poryvaev, Artem S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fedin, Matvey V
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Bei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Jiaguo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Liuyang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 15. Dez., Seite e2414803
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:15
|g month:12
|g pages:e2414803
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202414803
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 15
|c 12
|h e2414803
|