Large Area Near-Field Thermophotovoltaics for Low Temperature Applications

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 15. Dez., Seite e2411524
1. Verfasser: Selvidge, Jennifer (VerfasserIn)
Weitere Verfasser: France, Ryan M, Goldsmith, John, Solanki, Parth, Steiner, Myles A, Tervo, Eric J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article near‐field thermal radiation thermal energy conversion thermophotovoltaics
LEADER 01000naa a22002652 4500
001 NLM381625532
003 DE-627
005 20241216232609.0
007 cr uuu---uuuuu
008 241216s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202411524  |2 doi 
028 5 2 |a pubmed24n1633.xml 
035 |a (DE-627)NLM381625532 
035 |a (NLM)39676469 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Selvidge, Jennifer  |e verfasserin  |4 aut 
245 1 0 |a Large Area Near-Field Thermophotovoltaics for Low Temperature Applications 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Thermophotovoltaics, devices that convert thermal infrared photons to electricity, offer a key pathway for a variety of critical renewable energy technologies including thermal energy storage, waste heat recovery, and direct solar-thermal power generation. However, conventional far-field devices struggle to generate reasonable powers at lower temperatures. Near-field thermophotovoltaics provide a pathway to substantially higher powers by leveraging photon tunneling effects. Here a large area near-field thermophotovoltaic device is presented, created with an epitaxial co-fabrication approach, that consists of a self-supported 0.28 cm2 emitter-cell pair with a 150 nm gap. The device generates 1.22 mW at 460 °C, a 25-fold increase over the same cell measured in a far-field configuration. Furthermore, the near-field device demonstrates short circuit current densities greater than the far-field photocurrent limit at all the temperatures tested, confirming the role of photon tunneling effects in the performance enhancement. Modeling suggests several practical directions for cell improvements and further increases in power density. These results highlight the promise of near-field thermophotovoltaics, especially for low temperature applications 
650 4 |a Journal Article 
650 4 |a near‐field thermal radiation 
650 4 |a thermal energy conversion 
650 4 |a thermophotovoltaics 
700 1 |a France, Ryan M  |e verfasserin  |4 aut 
700 1 |a Goldsmith, John  |e verfasserin  |4 aut 
700 1 |a Solanki, Parth  |e verfasserin  |4 aut 
700 1 |a Steiner, Myles A  |e verfasserin  |4 aut 
700 1 |a Tervo, Eric J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 15. Dez., Seite e2411524  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:15  |g month:12  |g pages:e2411524 
856 4 0 |u http://dx.doi.org/10.1002/adma.202411524  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 15  |c 12  |h e2411524