Domain adaptation through active learning strategies for anomaly classification in wastewater treatment plants

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 90(2024), 11 vom: 29. Dez., Seite 3123-3138
1. Verfasser: Bellamoli, Francesca (VerfasserIn)
Weitere Verfasser: Vian, Marco, Di Iorio, Mattia, Melgani, Farid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article active learning domain adaptation gradient boosting intermittent aeration multiclass classification wastewater treatment plants Wastewater
LEADER 01000naa a22002652 4500
001 NLM381587339
003 DE-627
005 20241215232210.0
007 cr uuu---uuuuu
008 241215s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2024.387  |2 doi 
028 5 2 |a pubmed24n1632.xml 
035 |a (DE-627)NLM381587339 
035 |a (NLM)39673322 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bellamoli, Francesca  |e verfasserin  |4 aut 
245 1 0 |a Domain adaptation through active learning strategies for anomaly classification in wastewater treatment plants 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2024 
500 |a Date Revised 14.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). 
520 |a The increasing use of intermittent aeration controllers in wastewater treatment plants (WWTPs) aims to reduce aeration costs via continuous ammonia and oxygen measurements but faces challenges in detecting sensor and process anomalies. Applying machine learning to this unbalanced, multivariate, multiclass classification challenge requires much data, difficult to obtain from a new plant. This study develops a machine learning algorithm to identify anomalies in intermittent aeration WWTPs, adaptable to new plants with limited data. Utilizing active learning, the method iteratively selects samples from the target domain to fine-tune a gradient-boosting model initially trained on data from 17 plants. Three sampling strategies were tested, with low probability and high entropy sampling proving effective in early adaptation, achieving an F2-score close to the optimal with minimal sample use. The objective is to deploy these models as decision support systems for WWTP management, providing a strategy for efficient model adaptation to new plants, and optimizing labeling efforts 
650 4 |a Journal Article 
650 4 |a active learning 
650 4 |a domain adaptation 
650 4 |a gradient boosting 
650 4 |a intermittent aeration 
650 4 |a multiclass classification 
650 4 |a wastewater treatment plants 
650 7 |a Wastewater  |2 NLM 
700 1 |a Vian, Marco  |e verfasserin  |4 aut 
700 1 |a Di Iorio, Mattia  |e verfasserin  |4 aut 
700 1 |a Melgani, Farid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 90(2024), 11 vom: 29. Dez., Seite 3123-3138  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:90  |g year:2024  |g number:11  |g day:29  |g month:12  |g pages:3123-3138 
856 4 0 |u http://dx.doi.org/10.2166/wst.2024.387  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 90  |j 2024  |e 11  |b 29  |c 12  |h 3123-3138