Enhancing the sustainability of rubber materials : Dual benefits of wet mixing technology and recycled rubber's honeycomb reinforcement structure

Copyright © 2024 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 193(2024) vom: 12. Dez., Seite 190-198
1. Verfasser: Wang, Maohui (VerfasserIn)
Weitere Verfasser: Yong, Zhanfu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Highly wear-resistant tire tread compound Recycled materials Sustainable development Thermal performance optimization Wet mixing technology
LEADER 01000caa a22002652c 4500
001 NLM38157153X
003 DE-627
005 20250307012410.0
007 cr uuu---uuuuu
008 241214s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2024.12.012  |2 doi 
028 5 2 |a pubmed25n1270.xml 
035 |a (DE-627)NLM38157153X 
035 |a (NLM)39671745 
035 |a (PII)S0956-053X(24)00644-5 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Maohui  |e verfasserin  |4 aut 
245 1 0 |a Enhancing the sustainability of rubber materials  |b Dual benefits of wet mixing technology and recycled rubber's honeycomb reinforcement structure 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Copyright © 2024 Elsevier Ltd. All rights reserved. 
520 |a The world's three leading tire manufacturers have proposed specific timelines for using recycled materials. For instance, Michelin targets an increase in the proportion of sustainable materials in tires to 40 % by 2030 and aims to produce 100 % of its tires from bio-based, renewable, or recyclable materials as of 2050. In such a context, this study introduced wet mixing technology to apply recycled rubber (RR) in highly wear-resistant tire tread compounds. This technique leverages the rubber's inherent crosslink density to enhance the mechanical performance of final products. The results indicated that wet mixing effectively addressed the high viscosity issue of RR. In the traditional dry mixing method, physical blending typically results in large particle sizes and suboptimal performance. In contrast, wet mixing reduced the rubber's hysteresis loss by 75 % and improved its rebound performance by 35.6 % at 23 °C, 60 °C, and 100 °C compared to traditional dry mixing. DIN volume abrasion was also reduced by 23.3 %. Remarkably, Akron abrasion nearly doubled its effect. Additionally, wet mixing regulated aggregate structure and formed a densely packed honeycomb-like structure within RR. Incorporating RR using wet mixing demonstrates noticeable advantages in carbon black/natural rubber/RR composite materials. This approach also presents a viable path to sustainable development in the rubber manufacturing industry 
650 4 |a Journal Article 
650 4 |a Highly wear-resistant tire tread compound 
650 4 |a Recycled materials 
650 4 |a Sustainable development 
650 4 |a Thermal performance optimization 
650 4 |a Wet mixing technology 
700 1 |a Yong, Zhanfu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 193(2024) vom: 12. Dez., Seite 190-198  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:193  |g year:2024  |g day:12  |g month:12  |g pages:190-198 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2024.12.012  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 193  |j 2024  |b 12  |c 12  |h 190-198