|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM381491323 |
003 |
DE-627 |
005 |
20250307011241.0 |
007 |
cr uuu---uuuuu |
008 |
241212s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202411892
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1270.xml
|
035 |
|
|
|a (DE-627)NLM381491323
|
035 |
|
|
|a (NLM)39663730
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tekelenburg, Eelco K
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Mechanism of Hot-Carrier Photoluminescence in Sn-Based Perovskites
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 12.12.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a Metal halide perovskites have shown exceptionally slow hot-carrier cooling, which has been attributed to various physical mechanisms without reaching a consensus. Here, experiment and theory are combined to unveil the carrier cooling process in formamidinium (FA) and caesium (Cs) tin triiodide thin films. Through impulsive vibrational spectroscopy and molecular dynamics, much shorter phonon dephasing times of the hybrid perovskite, which accounts for the larger blueshift in the photoluminescence seen at high excitation density for FASnI3 compared to CsSnI3 is reported. Density functional theory investigations reveal that the largest contribution to the blueshift is accounted by a giant, dynamic band-filling effect in Sn-based perovskites, which in turn can explain the cooling disparity with the Pb-based counterparts. Several years after the first experimental observations, here a deeper understanding of the cooling mechanism of these materials is provided. Design principles for hot-carrier materials, which may be useful for future implementations of hot-carrier solar cells are further provided
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a hot carriers
|
650 |
|
4 |
|a impulsive vibrational spectroscopy
|
650 |
|
4 |
|a molecular dynamics
|
650 |
|
4 |
|a photophysics
|
650 |
|
4 |
|a tin perovskite
|
700 |
1 |
|
|a Camargo, Franco V A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Filippetti, Alessio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mattoni, Alessandro
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van de Ven, Larissa J M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pitaro, Matteo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cerullo, Giulio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Loi, Maria A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 11. Dez., Seite e2411892
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g year:2024
|g day:11
|g month:12
|g pages:e2411892
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202411892
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 11
|c 12
|h e2411892
|