Mechanical-Stimuli-Driven Pseudo-Conductive Channels Along Dielectric Heterojunction Interfaces for Mechanoelectric Energy Conversion and Transmission

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 11. Dez., Seite e2416952
1. Verfasser: Seo, Byungseok (VerfasserIn)
Weitere Verfasser: Noh, Dowon, Choi, Yong, Chen, Xinqi, Hu, Run, Choi, Wonjoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article dielectrics energy band fermi level mechano‐electric energy conversion pseudo‐conductive channel triboelectric
LEADER 01000naa a22002652 4500
001 NLM381491188
003 DE-627
005 20241212233414.0
007 cr uuu---uuuuu
008 241212s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202416952  |2 doi 
028 5 2 |a pubmed24n1629.xml 
035 |a (DE-627)NLM381491188 
035 |a (NLM)39663717 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Seo, Byungseok  |e verfasserin  |4 aut 
245 1 0 |a Mechanical-Stimuli-Driven Pseudo-Conductive Channels Along Dielectric Heterojunction Interfaces for Mechanoelectric Energy Conversion and Transmission 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Mechanoelectric energy conversion holds promise for energy conversion and transmission devices, yet conventional configurations rely on large-area conductive materials in active regions, limiting architectural design for cutting-edge devices. Here, a rational strategy is reported to create mechanical stimuli-driven pseudo-conductive (MSPC) channels entirely from dielectric materials, eliminating the need for electrodes in active regions. An in-depth investigation of MSPC channel formation mechanism at dielectric interfaces is conducted, employing energy band analyses. Following the mechanical stimuli-driven charging process, MSPC device effectively transmits electrical signals over 42 mm, achieving remarkable 512% enhancement compared to its pristine state. Control devices with non-continuous dielectric configurations highlight the impact of heterojunction interfaces on MSPC channels. A resistor-capacitor charging test reveals up to 49% reduction in voltage change rate, indicating a substantial decrease in electrical impedance along the MSPC channel. Furthermore, MSPC devices demonstrate information transmission capabilities, such as sequences of bits or letters, utilizing solely dielectric configurations. This study paves the way to reduce conductive materials of wearable electronics, biomedical implants, and IoT technologies, overcoming significant challenges such as potential electrical shortages, design inflexibility, limited manufacturing scalability, and maintenance issues 
650 4 |a Journal Article 
650 4 |a dielectrics 
650 4 |a energy band 
650 4 |a fermi level 
650 4 |a mechano‐electric energy conversion 
650 4 |a pseudo‐conductive channel 
650 4 |a triboelectric 
700 1 |a Noh, Dowon  |e verfasserin  |4 aut 
700 1 |a Choi, Yong  |e verfasserin  |4 aut 
700 1 |a Chen, Xinqi  |e verfasserin  |4 aut 
700 1 |a Hu, Run  |e verfasserin  |4 aut 
700 1 |a Choi, Wonjoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 11. Dez., Seite e2416952  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:11  |g month:12  |g pages:e2416952 
856 4 0 |u http://dx.doi.org/10.1002/adma.202416952  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 11  |c 12  |h e2416952