Evaluation of plant-based coagulants for turbidity removal and coagulant dosage prediction using machine learning

This study investigates the use of six plant-based coagulants - Acacia erioloba, Ricinodendron rautanenii, Schinziophyton rautanenii, Peltophorum africanum, Delonix regia, and Maerua angolensis for the removal of turbidity from wastewater effluent. The coagulants were characterized using Scanning El...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - (2024) vom: 11. Dez., Seite 1-16
1. Verfasser: Namane, Poloko Ivy (VerfasserIn)
Weitere Verfasser: Letshwenyo, Moatlhodi Wise, Yahya, Abid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Machine learning optimal dosage optimal pH plant based coagulants turbidity
LEADER 01000naa a22002652 4500
001 NLM381473430
003 DE-627
005 20241212233216.0
007 cr uuu---uuuuu
008 241212s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2024.2439183  |2 doi 
028 5 2 |a pubmed24n1629.xml 
035 |a (DE-627)NLM381473430 
035 |a (NLM)39661933 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Namane, Poloko Ivy  |e verfasserin  |4 aut 
245 1 0 |a Evaluation of plant-based coagulants for turbidity removal and coagulant dosage prediction using machine learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a This study investigates the use of six plant-based coagulants - Acacia erioloba, Ricinodendron rautanenii, Schinziophyton rautanenii, Peltophorum africanum, Delonix regia, and Maerua angolensis for the removal of turbidity from wastewater effluent. The coagulants were characterized using Scanning Electron Microscopy (SEM) to determine morphological structure, X-ray fluorescence (XRF) to assess chemical composition, and X-ray diffraction to analyse the molecular structure. The coagulation process was evaluated using jar tests with varying coagulant dosages and pH levels. SEM images revealed irregular, rough surfaces, with all materials being amorphous and non-crystalline. Significant levels of essential elements, including iron (Fe), calcium (Ca), sulphur (S), and potassium (K) were revealed. Turbidity removal efficiency fluctuated with pH, showing optimal results under alkaline conditions. Notably, strong negative correlations between pH and turbidity were observed for all coagulants except Peltophorum africanum at a dosage of 20 g/L. Doubling the coagulant volume achieved turbidity reductions between 59% and 92.24%, except for Acacia erioloba and Ricinodendron rautanenii at a dosage of 40 g/L, which showed increased turbidity. The study also employed machine learning techniques to analyse the data and predict the most effective coagulant dosage under different pH conditions. These findings suggest that plant-based coagulants could be viable alternatives to chemical coagulants, with machine learning providing accurate predictions of coagulation performance. Further research is recommended to explore the capabilities of these natural coagulants fully 
650 4 |a Journal Article 
650 4 |a Machine learning 
650 4 |a optimal dosage 
650 4 |a optimal pH 
650 4 |a plant based coagulants 
650 4 |a turbidity 
700 1 |a Letshwenyo, Moatlhodi Wise  |e verfasserin  |4 aut 
700 1 |a Yahya, Abid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g (2024) vom: 11. Dez., Seite 1-16  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnns 
773 1 8 |g year:2024  |g day:11  |g month:12  |g pages:1-16 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2024.2439183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 11  |c 12  |h 1-16