|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM38144516X |
003 |
DE-627 |
005 |
20241211233842.0 |
007 |
cr uuu---uuuuu |
008 |
241211s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202416345
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1628.xml
|
035 |
|
|
|a (DE-627)NLM38144516X
|
035 |
|
|
|a (NLM)39659112
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mao, Lei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Functional Hydrogels for Aqueous Zinc-Based Batteries
|b Progress and Perspectives
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.12.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Aqueous zinc batteries (AZBs) hold great potential for green grid-scale energy storage due to their affordability, resource abundance, safety, and environmental friendliness. However, their practical deployment is hindered by challenges related to the electrode, electrolyte, and interface. Functional hydrogels offer a promising solution to address such challenges owing to their broad electrochemical window, tunable structures, and pressure-responsive mechanical properties. In this review, the key properties that functional hydrogels must possess for advancing AZBs, including mechanical strength, ionic conductivity, swelling behavior, and degradability, from a perspective of the full life cycle of hydrogels in AZBs are summarized. Current modification strategies aimed at enhancing these properties and improving AZB performance are also explored. The challenges and design considerations for integrating functional hydrogels with electrodes and interface are discussed. In the end, the limitations and future directions for hydrogels to bridge the gap between academia and industries for the successful deployment of AZBs are discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a aqueous zinc‐batteries
|
650 |
|
4 |
|a full life cycle
|
650 |
|
4 |
|a hydrogels
|
650 |
|
4 |
|a interface
|
650 |
|
4 |
|a multifunctionality
|
700 |
1 |
|
|a Li, Guanjie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Binwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wen, Kaihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Cheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cai, Qinqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Xun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Zaiping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Shilin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 10. Dez., Seite e2416345
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:10
|g month:12
|g pages:e2416345
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202416345
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 10
|c 12
|h e2416345
|