High External Quantum Efficiency and Ultra-Narrowband Organic Photodiodes Using Single-Component Photoabsorber With Multiple-Resonance Effect
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 10. Dez., Seite e2414465 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article boron‐nitrogen molecule multi‐resonance effect narrowband organic photodiode photodetector |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Organic photodiodes (OPDs) that utilize wavelength-selective absorbing molecules offer a direct approach to capturing specific wavelengths of light in multispectral sensors/imaging systems without filters. However, they exhibit broad response bandwidths, low external quantum efficiency (EQE), and often require compromises in two-component photoactive materials. Herein, the first utility of boron-nitrogen (BN) single-component photoabsorbers, leveraging a multi-resonance effect are introduced to attain OPDs with both record-high EQE of 33.77% and ultra-small full-width half-maximum (FWHM) of 36 nm in the reported narrowband OPDs using single-component photoabsorbers. It is found that the outstanding performance of these narrowband OPDs can be attributed to the ultra-small FWHM, slow charge recombination, low activation energy, and balanced bipolar charge transport within the para-tert-butyl substituted B,N-embedded rigid polycyclic molecule (BNCz) film. Furthermore, BN derivatives such as BN(p)SCH3, BN(p)SO2CH3, and pyBN-m-H have also shown high EQE, minimal FWHM, and tunable photoresponse peaks ranging from blue-violet to blue-turquoise, highlighting the potential of BN molecules and molecular engineering in the development of novel narrowband absorbers for advanced wavelength-selective OPDs. Such pioneering working can provide a class of novel narrowband absorbers to propel the advancement of high-performance wavelength-selective OPDs |
---|---|
Beschreibung: | Date Revised 10.12.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202414465 |