Spatiotemporal Monitoring of Cropland Soil Organic Carbon Changes From Space

© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 12 vom: 09. Dez., Seite e17608
1. Verfasser: Broeg, Tom (VerfasserIn)
Weitere Verfasser: Don, Axel, Wiesmeier, Martin, Scholten, Thomas, Erasmi, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article bare soil carbon sequestration change detection climate change earth observation remote sensing soil reflectance composite space–time model Soil mehr... Carbon 7440-44-0
LEADER 01000caa a22002652 4500
001 NLM381377954
003 DE-627
005 20241211233510.0
007 cr uuu---uuuuu
008 241210s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.17608  |2 doi 
028 5 2 |a pubmed24n1628.xml 
035 |a (DE-627)NLM381377954 
035 |a (NLM)39651630 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Broeg, Tom  |e verfasserin  |4 aut 
245 1 0 |a Spatiotemporal Monitoring of Cropland Soil Organic Carbon Changes From Space 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.12.2024 
500 |a Date Revised 11.12.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Soil monitoring requires accurate and spatially explicit information on soil organic carbon (SOC) trends and changes over time. Spatiotemporal SOC models based on Earth Observation (EO) satellite data can support large-scale SOC monitoring but often lack sufficient temporal validation based on long-term soil data. In this study, we used repeated SOC samples from 1986 to 2022 and a time series of multispectral bare soil observations (Landsat and Sentinel-2) to model high-resolution cropland SOC trends for almost four decades. An in-depth validation of the temporal model uncertainty and accuracy of the derived SOC trends was conducted based on a network of 100 long-term monitoring sites that were continuously resampled every 5 years. While the general SOC prediction accuracy was high (R2 = 0.61; RMSE = 5.6 g kg-1), the direct validation of the derived SOC trends revealed a significantly greater uncertainty (R2 = 0.16; p < 0.0001), even though predicted and measured values showed similar distributions. Classifying the results into declining and increasing SOC trends, we found that 95% of all sites were either correctly identified or predicted as stable (p < 0.001), highlighting the potential of our findings. Increased accuracies for SOC trends were found in soils with higher SOC contents (R2 = 0.4) and sites with reduced tillage (R2 = 0.26). Based on the signal-to-noise ratio and temporal model uncertainty, we were able to show that the necessary time frame to detect SOC trends strongly depends on the absolute SOC changes present in the soils. Our findings highlight the potential to generate significant cropland SOC trend maps based on EO data and underline the necessity for direct validation with repeated soil samples and long-term SOC measurements. This study marks an important step toward the usability and integration of EO-based SOC maps for large-scale soil carbon monitoring 
650 4 |a Journal Article 
650 4 |a bare soil 
650 4 |a carbon sequestration 
650 4 |a change detection 
650 4 |a climate change 
650 4 |a earth observation 
650 4 |a remote sensing 
650 4 |a soil reflectance composite 
650 4 |a space–time model 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Don, Axel  |e verfasserin  |4 aut 
700 1 |a Wiesmeier, Martin  |e verfasserin  |4 aut 
700 1 |a Scholten, Thomas  |e verfasserin  |4 aut 
700 1 |a Erasmi, Stefan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 30(2024), 12 vom: 09. Dez., Seite e17608  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:12  |g day:09  |g month:12  |g pages:e17608 
856 4 0 |u http://dx.doi.org/10.1111/gcb.17608  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 12  |b 09  |c 12  |h e17608