Harnessing Defects in SnSe Film via Photo-Induced Doping for Fully Light-Controlled Artificial Synapse

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 08. Dez., Seite e2410783
1. Verfasser: Liu, Zihui (VerfasserIn)
Weitere Verfasser: Wang, Yao, Zhang, Yumin, Sun, Shuyi, Zhang, Tao, Zeng, Yu-Jia, Hu, Lingxiang, Zhuge, Fei, Lu, Bin, Pan, Xinhua, Ye, Zhizhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article artificial neural networks fully light‐controlled artificial synapse negative photoconductivity photo‐induced doping effect tin selenide
LEADER 01000naa a22002652 4500
001 NLM381347389
003 DE-627
005 20241209232546.0
007 cr uuu---uuuuu
008 241209s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202410783  |2 doi 
028 5 2 |a pubmed24n1626.xml 
035 |a (DE-627)NLM381347389 
035 |a (NLM)39648576 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Zihui  |e verfasserin  |4 aut 
245 1 0 |a Harnessing Defects in SnSe Film via Photo-Induced Doping for Fully Light-Controlled Artificial Synapse 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a 2D-layered materials are recognized as up-and-coming candidates to overcome the intrinsic physical limitation of silicon-based devices. Herein, the coexistence of positive persistent photoconductivity (PPPC) and negative persistent photoconductivity (NPPC) in SnSe thin films prepared by pulsed laser deposition provides an excellent avenue for engineering novel devices. It is determined that surface oxygen is co-regulated by physisorption and chemisorption, and the NPPC is attributed to the photo-controllable oxygen desorption behavior. The dominant behavior of chemisorption induces high stability, while physisorption provides room for adjusting NPPC. A simple fully light-modulated artificial synaptic device based on SnSe film is constructed to operate various synaptic plasticity and reversible modulation of conductance by applying 430 and 255 nm illuminations. A three-layer artificial neural network structure with a high accuracy of 95.33% to recognize handwritten digital images is implemented based on the device. Furthermore, the pressure-related cognition response of humans while climbing and the foraging and recognition behaviors of anemonefish are mimicked. This work demonstrates the potential of 2D-layered materials for developing neuromorphic computing and simulating biological behaviors without additional treatment. Furthermore, the one-step method for preparation is highly adaptable and expected to realize large-area growth and integration of SnSe-based devices 
650 4 |a Journal Article 
650 4 |a artificial neural networks 
650 4 |a fully light‐controlled artificial synapse 
650 4 |a negative photoconductivity 
650 4 |a photo‐induced doping effect 
650 4 |a tin selenide 
700 1 |a Wang, Yao  |e verfasserin  |4 aut 
700 1 |a Zhang, Yumin  |e verfasserin  |4 aut 
700 1 |a Sun, Shuyi  |e verfasserin  |4 aut 
700 1 |a Zhang, Tao  |e verfasserin  |4 aut 
700 1 |a Zeng, Yu-Jia  |e verfasserin  |4 aut 
700 1 |a Hu, Lingxiang  |e verfasserin  |4 aut 
700 1 |a Zhuge, Fei  |e verfasserin  |4 aut 
700 1 |a Lu, Bin  |e verfasserin  |4 aut 
700 1 |a Pan, Xinhua  |e verfasserin  |4 aut 
700 1 |a Ye, Zhizhen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 08. Dez., Seite e2410783  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:08  |g month:12  |g pages:e2410783 
856 4 0 |u http://dx.doi.org/10.1002/adma.202410783  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 08  |c 12  |h e2410783