Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile

© Paul Cuillier et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 6 vom: 01. Dez., Seite 1780-1788
1. Verfasser: Cuillier, Paul (VerfasserIn)
Weitere Verfasser: Tucker, Matthew G, Zhang, Yuanpeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article interatomic potentials machine learning reverse Monte Carlo total scattering
LEADER 01000naa a22002652 4500
001 NLM381151697
003 DE-627
005 20241205233615.0
007 cr uuu---uuuuu
008 241205s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724009282  |2 doi 
028 5 2 |a pubmed24n1622.xml 
035 |a (DE-627)NLM381151697 
035 |a (NLM)39628890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cuillier, Paul  |e verfasserin  |4 aut 
245 1 0 |a Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.12.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Paul Cuillier et al. 2024. 
520 |a Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for interpreting experimental diffraction data. To ensure that the under-constrained RMC algorithm yields reasonable results, the hybrid RMC approach applies interatomic potentials to obtain solutions that are both physically sensible and in agreement with experiment. To expand the range of materials that can be studied with hybrid RMC, we have implemented a new interatomic potential constraint in RMCProfile that grants flexibility to apply potentials supported by the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular dynamics code. This includes machine learning interatomic potentials, which provide a pathway to applying hybrid RMC to materials without currently available interatomic potentials. To this end, we present a methodology to use RMC to train machine learning interatomic potentials for hybrid RMC applications 
650 4 |a Journal Article 
650 4 |a interatomic potentials 
650 4 |a machine learning 
650 4 |a reverse Monte Carlo 
650 4 |a total scattering 
700 1 |a Tucker, Matthew G  |e verfasserin  |4 aut 
700 1 |a Zhang, Yuanpeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 6 vom: 01. Dez., Seite 1780-1788  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 6  |g day:01  |g month:12  |g pages:1780-1788 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724009282  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 6  |b 01  |c 12  |h 1780-1788