Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials

© Jean-Baptiste Jacob et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 6 vom: 01. Dez., Seite 1823-1840
1. Verfasser: Jacob, Jean-Baptiste (VerfasserIn)
Weitere Verfasser: Wright, Jonathan, Cordonnier, Benoît, Renard, François
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article 3DXRD Friedel pairs geological materials synchrotron X-ray diffraction
LEADER 01000naa a22002652 4500
001 NLM381151573
003 DE-627
005 20241205233614.0
007 cr uuu---uuuuu
008 241205s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724009634  |2 doi 
028 5 2 |a pubmed24n1622.xml 
035 |a (DE-627)NLM381151573 
035 |a (NLM)39628880 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jacob, Jean-Baptiste  |e verfasserin  |4 aut 
245 1 0 |a Exploiting Friedel pairs to interpret scanning 3DXRD data from complex geological materials 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.12.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Jean-Baptiste Jacob et al. 2024. 
520 |a The present study introduces a processing strategy for synchrotron scanning 3D X-ray diffraction (s3DXRD) data, aimed at addressing the challenges posed by large, highly deformed, polyphase materials such as crystalline rocks. Leveraging symmetric Bragg reflections known as Friedel pairs, our method enables diffraction events to be precisely located within the sample volume. This method allows for fitting the phase, crystal structure and unit-cell parameters at the intra-grain scale on a voxel grid. The processing workflow incorporates several new modules, designed to (i) efficiently match Friedel pairs in large s3DXRD datasets containing up to 108 diffraction peaks; (ii) assign phases to each pixel or voxel, resolving potential ambiguities arising from overlap in scattering angles between different crystallographic phases; and (iii) fit the crystal orientation and unit cell locally on a point-by-point basis. We demonstrate the effectiveness of our technique on fractured granite samples, highlighting the ability of the method to characterize complex geological materials and show their internal structure and mineral composition. Additionally, we include the characterization of a metal gasket made of a commercial aluminium alloy, which surrounded the granite sample during experiments. The results show the effectiveness of the technique in recovering information about the internal texture and residual strain of materials that have undergone high levels of plastic deformation 
650 4 |a Journal Article 
650 4 |a 3DXRD 
650 4 |a Friedel pairs 
650 4 |a geological materials 
650 4 |a synchrotron X-ray diffraction 
700 1 |a Wright, Jonathan  |e verfasserin  |4 aut 
700 1 |a Cordonnier, Benoît  |e verfasserin  |4 aut 
700 1 |a Renard, François  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 6 vom: 01. Dez., Seite 1823-1840  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 6  |g day:01  |g month:12  |g pages:1823-1840 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724009634  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 6  |b 01  |c 12  |h 1823-1840