Urinary volatile organic compounds (VOCs) based prostate cancer diagnosis via high-dimensional classification

© 2024 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 16 vom: 03., Seite 3468-3485
1. Verfasser: Quaye, George Ekow (VerfasserIn)
Weitere Verfasser: Lee, Wen-Yee, Noriega Landa, Elizabeth, Badmos, Sabur, Holbrook, Kiana L, Su, Xiaogang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Classification PLS-DA high dimensional (HD) modeling prostate cancer screening and diagnosis regularized logistic regression volatile organic compounds (VOC)
LEADER 01000naa a22002652 4500
001 NLM381151379
003 DE-627
005 20241205233613.0
007 cr uuu---uuuuu
008 241205s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2346355  |2 doi 
028 5 2 |a pubmed24n1622.xml 
035 |a (DE-627)NLM381151379 
035 |a (NLM)39628860 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Quaye, George Ekow  |e verfasserin  |4 aut 
245 1 0 |a Urinary volatile organic compounds (VOCs) based prostate cancer diagnosis via high-dimensional classification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.12.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Early detection of prostate cancer is critical for successful treatment and survival. However, current diagnostic methods such as prostate-specific antigen (PSA) testing and digital rectal examination (DRE) have limitations in accuracy, specificity, and sensitivity. Recent research suggests that urinary volatile organic compounds (VOCs) could serve as potential biomarkers for prostate cancer diagnosis. In this study, urine samples from 337 PCa-positive and 233 PCa-negative patients were collected to develop a diagnosis model. The study involves a high dimensional (HD) classification problem due to the vast number of measured VOCs. Our findings reveal that regularized logistic regression outperforms numerous other classifiers when analyzing the collected data. In particular, we have selected a regularized logistic model with the SCAD (smoothly clipped absolute deviation) penalty as the final model, which attains an AUC (area under the ROC curve) of 0.748, in contrast to a PSA-based AUC of 0.540. These results underscore the potential of VOC-based diagnosis as a clinically feasible approach for PCa screening 
650 4 |a Journal Article 
650 4 |a Classification 
650 4 |a PLS-DA 
650 4 |a high dimensional (HD) modeling 
650 4 |a prostate cancer screening and diagnosis 
650 4 |a regularized logistic regression 
650 4 |a volatile organic compounds (VOC) 
700 1 |a Lee, Wen-Yee  |e verfasserin  |4 aut 
700 1 |a Noriega Landa, Elizabeth  |e verfasserin  |4 aut 
700 1 |a Badmos, Sabur  |e verfasserin  |4 aut 
700 1 |a Holbrook, Kiana L  |e verfasserin  |4 aut 
700 1 |a Su, Xiaogang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 16 vom: 03., Seite 3468-3485  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:16  |g day:03  |g pages:3468-3485 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2346355  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 16  |b 03  |h 3468-3485