Multifunctional High-Entropy Alloy Nanolayer Toward Long-Life Anode-Free Sodium Metal Battery

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 3 vom: 21. Jan., Seite e2413331
1. Verfasser: Liu, Lin (VerfasserIn)
Weitere Verfasser: Cai, Zijian, Yang, Shoumeng, Yang, Yang, Yao, Yu, He, Shengnan, Xu, Shitan, Wu, Zhijun, Pan, Hongge, Rui, Xianhong, Yu, Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article anode‐free sodium metal battery enhanced sodiophilicity full cell high‐entropy alloy nanolayer long life
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Anode-free sodium metal batteries (AFSMBs) hold great promise due to high energy density and low cost. Unfortunately, their practical applications are hindered by poor cycling stability, which is attributed to Na dendrite growth and inferior Na plating/stripping reversibility on conventional sodiophobic current collectors. Here, a thin high-entropy alloy (HEA, NbMoTaWV) interfacial layer composed of densely packed nanoplates is constructed on commercial aluminum foil (NbMoTaWVAl) for AFSMBs. The enhanced sodiophilicity of the HEA greatly reduces Na nucleation barrier with low nucleation overpotential. Simultaneously, abundant active sites of the HEA can boost interfacial reaction kinetics and guide uniform Na deposition. Furthermore, plentiful HEA nanoplates can homogenize electric field distribution and decrease the local current density. Benefiting from the advantageous properties of NbMoTaWV@Al, outstanding electrochemical performances, including an average Coulombic efficiency of 99.5% over 1000 cycles at 2 mA cm-2/2 mAh cm-2 in asymmetric cells, alongside a small overpotential (10 mV at 1 mA cm-2) and a long lifespan of 2500 cycles in symmetric cells, are achieved. More impressively, the anode-free NbMoTaWV@Al||Na3V2(PO4)3 batteries display superior cycling stability over 300 cycles. This work presents an efficient method of employing multifunctional HEA materials to manipulate the interfacial properties of current collector for high-performance AFSMBs
Beschreibung:Date Revised 23.01.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202413331