Stability and Robustness of Time-discretization Schemes for the Allen-Cahn Equation via Bifurcation and Perturbation Analysis
The Allen-Cahn equation is a fundamental model for phase transitions, offering critical insights into the dynamics of interface evolution in various physical systems. This paper investigates the stability and robustness of frequently utilized time-discretization numerical schemes for solving the All...
Veröffentlicht in: | Journal of computational physics. - 1986. - 521(2024), Pt 2 vom: 15. Jan. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2025
|
Zugriff auf das übergeordnete Werk: | Journal of computational physics |
Schlagworte: | Journal Article Allen-Cahn equation Backward Euler method Crank–Nicolson scheme Numerical approximation Runge-Kutta method Stability |
Online verfügbar |
Volltext |