Size Effect of Micro-Sized Graphene Oxide on Self-Healing and Photothermal Anti-icing Coatings
Microsized graphene oxide (GO) is promising for the development of efficient anti-icing coatings due to its excellent anti-icing activity, remarkable photothermal property, mature industrialization and easy availability. However, the size effect of microsized GO on the performance of anti-icing coat...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 49 vom: 10. Dez., Seite 26026-26032 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Microsized graphene oxide (GO) is promising for the development of efficient anti-icing coatings due to its excellent anti-icing activity, remarkable photothermal property, mature industrialization and easy availability. However, the size effect of microsized GO on the performance of anti-icing coatings remains unknown. Herein, a series of microsized GO with different sizes are incorporated into a supramolecular polymeric matrix to study the GO size effect and develop the self-healable and photothermal anti-icing coatings. Results show that the increase of GO size significantly enhances the anti-icing, deicing, and photothermal performance of the coatings. With the increase of GO size, the freezing delay time is prolonged by ∼124.7%; the ice nucleation temperature and ice shear strength are reduced by ∼22.0% and ∼40.3%, respectively; and the photothermal ability is increased by ∼19.8%. The best-performing coating (LGO-SH) with the largest GO exhibits high stability/durability during 50 icing/deicing cycles and at different low temperatures. Moreover, owing to the multiple dynamic bonds in the supramolecular matrix, LGO-SH can autonomously self-heal at -20 °C and recover its original ice shear strength during 10 damage/healing cycles. Furthermore, LGO-SH achieves fast photothermal deicing due to its excellent photothermal ability. Findings in this study provide a guideline to develop efficient GO-based anti-icing coatings and build a bridge between the GO industry and anti-icing coatings |
---|---|
Beschreibung: | Date Revised 10.12.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c03457 |