Machine learning-based identification of general transcriptional predictors for plant disease

© 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 245(2024), 2 vom: 22. Jan., Seite 785-806
1. Verfasser: Sia, Jayson (VerfasserIn)
Weitere Verfasser: Zhang, Wei, Cheng, Mingxi, Bogdan, Paul, Cook, David E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Arabidopsis thaliana feature selection general stress response machine learning network science plant–pathogen interaction predictive biology
LEADER 01000caa a22002652 4500
001 NLM380602539
003 DE-627
005 20241219232358.0
007 cr uuu---uuuuu
008 241122s2025 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.20264  |2 doi 
028 5 2 |a pubmed24n1636.xml 
035 |a (DE-627)NLM380602539 
035 |a (NLM)39573924 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sia, Jayson  |e verfasserin  |4 aut 
245 1 0 |a Machine learning-based identification of general transcriptional predictors for plant disease 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.12.2024 
500 |a Date Revised 18.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation. 
520 |a This study investigated the generalizability of Arabidopsis thaliana immune responses across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomonas syringae, using a data-driven, machine learning approach. Machine learning models were trained to predict disease development from early transcriptional responses. Feature selection techniques based on network science and topology were used to train models employing only a fraction of the transcriptome. Machine learning models trained on one pathosystem where then validated by predicting disease development in new pathosystems. The identified feature selection gene sets were enriched for pathways related to biotic, abiotic, and stress responses, though the specific genes involved differed between feature sets. This suggests common immune responses to diverse pathogens that operate via different gene sets. The study demonstrates that machine learning can uncover both established and novel components of the plant's immune response, offering insights into disease resistance mechanisms. These predictive models highlight the potential to advance our understanding of multigenic outcomes in plant immunity and can be further refined for applications in disease prediction 
650 4 |a Journal Article 
650 4 |a Arabidopsis thaliana 
650 4 |a feature selection 
650 4 |a general stress response 
650 4 |a machine learning 
650 4 |a network science 
650 4 |a plant–pathogen interaction 
650 4 |a predictive biology 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Cheng, Mingxi  |e verfasserin  |4 aut 
700 1 |a Bogdan, Paul  |e verfasserin  |4 aut 
700 1 |a Cook, David E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 245(2024), 2 vom: 22. Jan., Seite 785-806  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:245  |g year:2024  |g number:2  |g day:22  |g month:01  |g pages:785-806 
856 4 0 |u http://dx.doi.org/10.1111/nph.20264  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 245  |j 2024  |e 2  |b 22  |c 01  |h 785-806