|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM380546477 |
003 |
DE-627 |
005 |
20241121233244.0 |
007 |
cr uuu---uuuuu |
008 |
241121s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202410338
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1608.xml
|
035 |
|
|
|a (DE-627)NLM380546477
|
035 |
|
|
|a (NLM)39568249
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Xiongjie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Visible Light-Triggered Self-Welding Perovskite Solar Cells and Modules
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Flexible perovskite solar cells (F-PSCs) are highly promising for both stationary and mobile applications because of their advantageous features, including mechanical flexibility, their lightweight and thin nature, and cost-effectiveness. However, a number of drawbacks, such as mechanical instability, make their practical application difficult. Here, self-welding dynamic diselenide that is triggered by visible light into the structure of F-PSCs to improve their long-term stability by repairing cracks and defects in the absorber layer is incorporated. The diselenide confers the flexibility and self-welding properties to the Cs0.05MA0.05FA0.9PbI3 perovskite layer, enabling optimized F-PSC devices to achieve a power conversion efficiency of 24.85% while retaining ca. 92% of their initial efficiency after undergoing 15 000 bending cycles at a curvature radius of 3 mm. The corresponding flexible large-scale module with an active area of 15.82 cm2 achieved a record PCE of 21.65%
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a diselenides
|
650 |
|
4 |
|a flexible perovskite modules
|
650 |
|
4 |
|a flexible perovskite solar cells
|
650 |
|
4 |
|a self‐welding
|
650 |
|
4 |
|a stability
|
650 |
|
4 |
|a visible‐light
|
700 |
1 |
|
|a Ding, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Junyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zhiguo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Hongliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Haixuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhirong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Letian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Yan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dyson, Paul J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nazeeruddin, Mohammad Khaja
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Mingkui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 20. Nov., Seite e2410338
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:20
|g month:11
|g pages:e2410338
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202410338
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 20
|c 11
|h e2410338
|