Swimming Modes of Bacteria Escaping from a Soft Confined Space

Navigating through soft and highly confined environments is crucial for bacteria moving within living organisms' tissues, yet this topic has been less explored. In our study, we experimentally harnessed the unique biconcave geometry of red blood cells (RBCs) to enable real-time visualization of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 48 vom: 03. Dez., Seite 25698-25707
1. Verfasser: Tian, Yangguang (VerfasserIn)
Weitere Verfasser: Li, Xinlei, Chen, Yaozhen, Hu, Xingbin, Liu, Yanan, Luo, Hao, Jing, Guangyin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM380516179
003 DE-627
005 20241204235014.0
007 cr uuu---uuuuu
008 241120s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c03808  |2 doi 
028 5 2 |a pubmed24n1620.xml 
035 |a (DE-627)NLM380516179 
035 |a (NLM)39565220 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Yangguang  |e verfasserin  |4 aut 
245 1 0 |a Swimming Modes of Bacteria Escaping from a Soft Confined Space 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.12.2024 
500 |a Date Revised 03.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Navigating through soft and highly confined environments is crucial for bacteria moving within living organisms' tissues, yet this topic has been less explored. In our study, we experimentally harnessed the unique biconcave geometry of red blood cells (RBCs) to enable real-time visualization of swimming Escherichia coli interacting with soft RBCs. Our findings show that RBCs adhering to a rigid surface can enclose spaces comparable to the size of bacteria, effectively entrapping them. Remarkably, we found that bacteria can escape from this extremely confined space through three newly defined escape modes: Bundling, Unbundling, and Flipping, each mode relying on the specific states of bacterial flagella. A quantitative analysis uncovers significant differences among these modes in terms of scattering angle, escaping speed, and trapping duration. We used two methods to alter the rigidity and adhesion strength of RBCs, and we studied their effects on the detailed bacterial escape process. Our results contribute to the knowledge of bacterial migration in soft, confined spaces, thereby enhancing our understanding of similar processes in biological tissue environments 
650 4 |a Journal Article 
700 1 |a Li, Xinlei  |e verfasserin  |4 aut 
700 1 |a Chen, Yaozhen  |e verfasserin  |4 aut 
700 1 |a Hu, Xingbin  |e verfasserin  |4 aut 
700 1 |a Liu, Yanan  |e verfasserin  |4 aut 
700 1 |a Luo, Hao  |e verfasserin  |4 aut 
700 1 |a Jing, Guangyin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 40(2024), 48 vom: 03. Dez., Seite 25698-25707  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:48  |g day:03  |g month:12  |g pages:25698-25707 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c03808  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 48  |b 03  |c 12  |h 25698-25707