Deepening Root Inputs : Potential Soil Carbon Accrual From Breeding for Deeper Rooted Maize

© 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 11 vom: 19. Nov., Seite e17591
1. Verfasser: Cotrufo, M Francesca (VerfasserIn)
Weitere Verfasser: Haddix, Michelle L, Mullen, Jack L, Zhang, Yao, McKay, John K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article MEMS model corn exudates maize roots soil organic carbon Soil Carbon 7440-44-0
LEADER 01000caa a22002652 4500
001 NLM380463083
003 DE-627
005 20241120232917.0
007 cr uuu---uuuuu
008 241119s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.17591  |2 doi 
028 5 2 |a pubmed24n1607.xml 
035 |a (DE-627)NLM380463083 
035 |a (NLM)39559907 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cotrufo, M Francesca  |e verfasserin  |4 aut 
245 1 0 |a Deepening Root Inputs  |b Potential Soil Carbon Accrual From Breeding for Deeper Rooted Maize 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.11.2024 
500 |a Date Revised 19.11.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Author(s). Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Breeding annual crops for enhanced root depth and biomass is considered a promising intervention to accrue soil organic carbon (SOC) in croplands, with benefits for climate change mitigation and soil health. In annual crops, genetic technology (seed) is replaced every year as part of a farmer's fixed costs, making breeding solutions to climate change more scalable and affordable than management approaches. However, mechanistic understanding and quantitative estimates of SOC accrual potentials from crops with enhanced root phenotypes are lacking. Maize is the highest acreage and yielding crop in the US, characterized by relatively low root biomass confined to the topsoil, making it a suitable candidate for improvement that could be rapidly scaled. We ran a 2-year field experiment to quantify the formation and composition (i.e., particulate (POM), coarse and fine mineral-associated organic matter (chaOM and MAOM, respectively) of new SOC to a depth of 90 cm from the decomposition of isotopically labeled maize roots and exudates. Additionally, we used the process-based MEMS 2 model to simulate the SOC accrual potential of maize root ideotypes enhanced to either shift root production to deeper depths or increase root biomass allocation, assuming no change in overall productivity. In our field experiment, maize root decomposition preferentially formed POM, with doubled efficiency below 50 cm, while root exudates preferentially formed MAOM. Modeling showed that shifting root inputs to deeper layer or increasing allocation to roots resulted in a deterministic increase in SOC, ranging from 0.05 to 0.15 Mg C ha-1 per year, which are at the low end of the range of published SOC per hectare annual accrual estimates from adoption of a variety of crop management practices. Our analysis indicates that for maize, breeding for increasing root inputs as a strategy for SOC accrual has limited impact on a per-hectare basis, although given that globally maize is produced on hundreds of millions of hectares each year, there is potential for this technology and its effect to scale. For maize-soy system that dominates US acres, changes in the overall cropping system are needed for sizable greenhouse gas reductions and SOC accrual. This study demonstrated a modeling and experimental framework to quantify and forecast SOC changes created by changing crop root inputs 
650 4 |a Journal Article 
650 4 |a MEMS model 
650 4 |a corn 
650 4 |a exudates 
650 4 |a maize 
650 4 |a roots 
650 4 |a soil organic carbon 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Haddix, Michelle L  |e verfasserin  |4 aut 
700 1 |a Mullen, Jack L  |e verfasserin  |4 aut 
700 1 |a Zhang, Yao  |e verfasserin  |4 aut 
700 1 |a McKay, John K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 30(2024), 11 vom: 19. Nov., Seite e17591  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:11  |g day:19  |g month:11  |g pages:e17591 
856 4 0 |u http://dx.doi.org/10.1111/gcb.17591  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 11  |b 19  |c 11  |h e17591