Multifunctional Biocomposite Materials from Chlorella vulgaris Microalgae

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 1 vom: 18. Jan., Seite e2413618
1. Verfasser: Kellersztein, Israel (VerfasserIn)
Weitere Verfasser: Tish, Daniel, Pederson, John, Bechthold, Martin, Daraio, Chiara
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article additive manufacturing composite materials mechanics of materials microalgae natural materials Biocompatible Materials
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Extrusion 3D-printing of biopolymers and natural fiber-based biocomposites enables the fabrication of complex structures, ranging from implants' scaffolds to eco-friendly structural materials. However, conventional polymer extrusion requires high energy consumption to reduce viscosity, and natural fiber reinforcement often requires harsh chemical treatments to improve adhesion. We address these challenges by introducing a sustainable framework to fabricate natural biocomposites using Chlorella vulgaris microalgae as the matrix. Through bioink optimization and process refinement, we produced lightweight, multifunctional materials with hierarchical architectures. Infrared spectroscopy analysis reveals that hydrogen bonding plays a critical role in the binding and reinforcement of Chlorella cells by hydroxyethyl cellulose (HEC). As water content decreases, the hydrogen bonding network evolves from water-mediated interactions to direct hydrogen bonds between HEC and Chlorella, enhancing the mechanical properties. A controlled dehydration process maintains continuous microalgae morphology, preventing cracking. The resulting biocomposites exhibit a bending stiffness of 1.6 GPa and isotropic heat transfer and thermal conductivity of 0.10 W/mK at room temperature, demonstrating effective thermal insulation. These characteristics make Chlorella biocomposites promising candidates for applications requiring both structural performance and thermal insulation, offering a sustainable alternative to conventional materials in response to growing environmental demands
Beschreibung:Date Completed 08.01.2025
Date Revised 08.01.2025
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202413618