Dual Near-Infrared-Response S-Scheme Heterojunction with Asymmetric Adsorption Sites for Enhanced Nitrogen Photoreduction

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 18. Nov., Seite e2416210
1. Verfasser: Li, Jiaxin (VerfasserIn)
Weitere Verfasser: Zhang, Chaoqi, Bao, Tong, Xi, Yamin, Yuan, Ling, Zou, Yingying, Bi, Yin, Liu, Chao, Yu, Chengzhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article S‐scheme heterojunction asymmetric adsorption near‐infrared response nitrogen fixation photocatalysis
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Photocatalytic nitrogen reduction reaction (PNRR) holds immense promise for sustainable ammonia (NH3) synthesis. However, few photocatalysts can utilize NIR light that carries over 50% of the solar energy for NH3 production with high performance. Herein, a dual NIR-responsive S-scheme ZnCoSx/Fe3S4 heterojunction photocatalyst is designed with asymmetric adsorption sites and excellent PNRR performance. The heterojunction possesses a hollow-on-hollow superstructure: Fe3S4 nanocrystal-modified ZnCoSx nanocages as building blocks assemble into spindle-shaped particles with a spindle-like cavity. Both Fe3S4 and ZnCoSx are NIR active, allowing efficient utilization of full-spectrum light. Moreover, an S-scheme heterojunction is constructed that promotes charge separation. In addition, the Fe/Co dual-metal sites at the interface enable an asymmetric side-on adsorption mode of N2, favoring the polarization and activation of N2 molecules. In combination with the promoted mass transfer and active site exposure of hollow superstructure, a superior PNRR performance is achieved, with a high NH3 evolution rate of 2523.4  µmol g-1 h-1, an apparent quantum yield of 9.4% at 400 nm and 8% at 1000 nm, and a solar-to-chemical conversion efficiency of 0.32%. The work paves the way for the rational design of advanced heterojunction catalysts for PNRR
Beschreibung:Date Revised 19.11.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202416210