Electric-Field Control of the Local Thermal Conductivity in Charge Transfer Oxides

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 12. Nov., Seite e2413045
1. Verfasser: Varela-Domínguez, Noa (VerfasserIn)
Weitere Verfasser: Claro, Marcel S, Vázquez-Vázquez, Carlos, López-Quintela, Manuel Arturo, Rivadulla, Francisco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conductive AFM thermal conductivity thermal management thin films
LEADER 01000naa a22002652 4500
001 NLM380199556
003 DE-627
005 20241115235319.0
007 cr uuu---uuuuu
008 241115s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202413045  |2 doi 
028 5 2 |a pubmed24n1602.xml 
035 |a (DE-627)NLM380199556 
035 |a (NLM)39533483 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Varela-Domínguez, Noa  |e verfasserin  |4 aut 
245 1 0 |a Electric-Field Control of the Local Thermal Conductivity in Charge Transfer Oxides 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a Phonons, the collective excitations responsible for heat transport in crystalline insulating solids, lack electric charge or magnetic moment, which complicates their active control via external fields. This presents a significant challenge in designing thermal equivalents of basic electronic circuit elements, such as transistors or diodes. Achieving these goals requires precise and reversible modification of thermal conductivity in materials. In this work, the continuous tuning of local thermal conductivity in charge-transfer SrFeO3-x and La0.6Sr0.4CoO3-x oxides using a voltage-biased Atomic Force Microscopy (AFM) tip at room temperature is demonstrated. This method allows the creation of micron-sized domains with well-defined thermal conductivity, achieving reductions of up to 50%, measured by spatially resolved Frequency Domain Thermoreflectance (FDTR). By optimizing the oxide's chemical composition, the thermal states remain stable under normal atmospheric conditions but can be reverted to their original values through thermal annealing in air. A comparison between Mott-Hubbard and charge-transfer oxides reveals the critical role of redox-active lattice oxygen in ensuring full reversibility of the process. This approach marks a significant step toward fabricating oxide-based tunable microthermal resistances and other elements for thermal circuits 
650 4 |a Journal Article 
650 4 |a conductive AFM 
650 4 |a thermal conductivity 
650 4 |a thermal management 
650 4 |a thin films 
700 1 |a Claro, Marcel S  |e verfasserin  |4 aut 
700 1 |a Vázquez-Vázquez, Carlos  |e verfasserin  |4 aut 
700 1 |a López-Quintela, Manuel Arturo  |e verfasserin  |4 aut 
700 1 |a Rivadulla, Francisco  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 12. Nov., Seite e2413045  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:12  |g month:11  |g pages:e2413045 
856 4 0 |u http://dx.doi.org/10.1002/adma.202413045  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 12  |c 11  |h e2413045