Metal-Organic-Framework-Derived CuO-ZnOCN Hollow Nanoreactors : Precise Structural Control and Efficient Catalytic Performance

Hollow carbon-nitrogen nanoreactors constitute a class of porous materials that have widespread application owing to their large inner cavities, low densities, core-shell interfaces, and enrichment effects. Direct carbonization of precursors is the simplest and most economical method to prepare poro...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 47 vom: 26. Nov., Seite 24832-24841
Auteur principal: Ban, Lijun (Auteur)
Autres auteurs: Li, Haitao, Huang, Xin, Xu, Yixuan, Guo, Xia, Zhang, Yin, Zhao, Jianghong, Zhao, Yongxiang
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:Hollow carbon-nitrogen nanoreactors constitute a class of porous materials that have widespread application owing to their large inner cavities, low densities, core-shell interfaces, and enrichment effects. Direct carbonization of precursors is the simplest and most economical method to prepare porous carbon-nitrogen materials; however, this method requires high temperatures, thus yielding nonoxide structures. In this study, CuO-ZnOCN (CN: carbon-nitrogen layers) is prepared using the two-step heating of zeolitic imidazolium skeleton-8 (ZIF-8) coated with CuO-ZnO precursors. During carbonization, the ZIF-8 nanoparticles are converted into carbon-nitrogen layers at high temperatures. Next, a heating process based on the autocatalytic effect of Cu can be used to etch the hollow structure prepared by the carbon-nitrogen layers. The CuO-ZnO@CN hollow composites fabricated using this method exhibit excellent catalytic properties for the ethynylation of formaldehyde. The proposed strategy can be used to develop techniques for syntheses of readily reducible carbon oxide claddings and their composites
Description:Date Revised 26.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c02663