|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM380180561 |
003 |
DE-627 |
005 |
20241115235043.0 |
007 |
cr uuu---uuuuu |
008 |
241115s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2024.3492724
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1601.xml
|
035 |
|
|
|a (DE-627)NLM380180561
|
035 |
|
|
|a (NLM)39531560
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Huan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a SegHSI
|b Semantic Segmentation of Hyperspectral Images with Limited Labeled Pixels
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 12.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for the whole image. This paper proposes SegHSI, an effective and efficient end-to-end HSI segmentation model, alongside a novel training strategy. SegHSI adopts a head-free structure with cluster attention modules and spatial-aware feedforward networks (SA-FFN) for multiscale spatial encoding. Cluster attention encodes pixels through constructed clusters within the HSI, while SA-FFN integrates depth-wise convolution to enhance spatial context. Our training strategy utilizes a student-teacher model framework that combines labeled pixel class information with consistency learning on unlabeled pixels. Experiments on three public HSI datasets demonstrate that SegHSI not only surpasses other state-of-the-art models in segmentation accuracy but also achieves inference time at the scale of seconds, even reaching sub-second speeds for full-image classification. Code is available at https://github.com/huanliu233/SegHSI
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Li, Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Xiang-Gen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Mengmeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Zhengqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Lujie
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g PP(2024) vom: 12. Nov.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:PP
|g year:2024
|g day:12
|g month:11
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2024.3492724
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d PP
|j 2024
|b 12
|c 11
|