SegHSI : Semantic Segmentation of Hyperspectral Images with Limited Labeled Pixels

Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - PP(2024) vom: 12. Nov.
1. Verfasser: Liu, Huan (VerfasserIn)
Weitere Verfasser: Li, Wei, Xia, Xiang-Gen, Zhang, Mengmeng, Guo, Zhengqi, Song, Lujie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM380180561
003 DE-627
005 20241115235043.0
007 cr uuu---uuuuu
008 241115s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3492724  |2 doi 
028 5 2 |a pubmed24n1601.xml 
035 |a (DE-627)NLM380180561 
035 |a (NLM)39531560 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Huan  |e verfasserin  |4 aut 
245 1 0 |a SegHSI  |b Semantic Segmentation of Hyperspectral Images with Limited Labeled Pixels 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Hyperspectral images (HSIs), with hundreds of narrow spectral bands, are increasingly used for ground object classification in remote sensing. However, many HSI classification models operate pixel-by-pixel, limiting the utilization of spatial information and resulting in increased inference time for the whole image. This paper proposes SegHSI, an effective and efficient end-to-end HSI segmentation model, alongside a novel training strategy. SegHSI adopts a head-free structure with cluster attention modules and spatial-aware feedforward networks (SA-FFN) for multiscale spatial encoding. Cluster attention encodes pixels through constructed clusters within the HSI, while SA-FFN integrates depth-wise convolution to enhance spatial context. Our training strategy utilizes a student-teacher model framework that combines labeled pixel class information with consistency learning on unlabeled pixels. Experiments on three public HSI datasets demonstrate that SegHSI not only surpasses other state-of-the-art models in segmentation accuracy but also achieves inference time at the scale of seconds, even reaching sub-second speeds for full-image classification. Code is available at https://github.com/huanliu233/SegHSI 
650 4 |a Journal Article 
700 1 |a Li, Wei  |e verfasserin  |4 aut 
700 1 |a Xia, Xiang-Gen  |e verfasserin  |4 aut 
700 1 |a Zhang, Mengmeng  |e verfasserin  |4 aut 
700 1 |a Guo, Zhengqi  |e verfasserin  |4 aut 
700 1 |a Song, Lujie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g PP(2024) vom: 12. Nov.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:12  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3492724  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 12  |c 11