Methane Gas Transport in Ca-MMT Shale Nanoslits Considering Water Content Effects : Insights from Molecular Dynamics Simulations

Two-phase flow remains a significant challenge in the development of water-bearing shale gas, particularly regarding the flow of gases through clay minerals in such formations. Nonequilibrium molecular dynamics simulation is investigated to research the two-phase flow of water (H2O) and methane (CH4...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 47 vom: 26. Nov., Seite 25110-25117
1. Verfasser: Zhang, Lu (VerfasserIn)
Weitere Verfasser: Yan, Wende, Fu, Jingang, Cai, Shouyin, Liang, Hongbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM380174774
003 DE-627
005 20241126232339.0
007 cr uuu---uuuuu
008 241115s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c03346  |2 doi 
028 5 2 |a pubmed24n1613.xml 
035 |a (DE-627)NLM380174774 
035 |a (NLM)39530975 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lu  |e verfasserin  |4 aut 
245 1 0 |a Methane Gas Transport in Ca-MMT Shale Nanoslits Considering Water Content Effects  |b Insights from Molecular Dynamics Simulations 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Two-phase flow remains a significant challenge in the development of water-bearing shale gas, particularly regarding the flow of gases through clay minerals in such formations. Nonequilibrium molecular dynamics simulation is investigated to research the two-phase flow of water (H2O) and methane (CH4) through Ca-montmorillonite (MMT) shale nanoslits. The results indicate that water molecules preferentially adsorb onto the surfaces of the Ca-MMT shale nanoslits, leading to the formation of water bridges within the nanoslits as water content increases. Notably, CH4 molecules exhibit complete solubility in the water phase, and their maximum velocity gradually decreases, resulting in a flattened parabolic flow profile with a higher gas-water percent (GWP). In the two-phase flow, CH4 continues to flow without slip in the inorganic nanopores due to water molecules occupying the surfaces and creating a water film. However, when the water content (GWP) exceeds 80.87%, CH4 gas molecules become dissolved in the water, filling the inorganic nanoslits and leading to a zero-gas flux. This condition causes CH4 retention in adjacent nanoslits, creating a "water lock gas" effect. This research provides a theoretical foundation for understanding multiphase flow in water-bearing shale gas and offers a refined description of the shale gas extraction process for future application 
650 4 |a Journal Article 
700 1 |a Yan, Wende  |e verfasserin  |4 aut 
700 1 |a Fu, Jingang  |e verfasserin  |4 aut 
700 1 |a Cai, Shouyin  |e verfasserin  |4 aut 
700 1 |a Liang, Hongbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 40(2024), 47 vom: 26. Nov., Seite 25110-25117  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:47  |g day:26  |g month:11  |g pages:25110-25117 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c03346  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 47  |b 26  |c 11  |h 25110-25117