Oxychloride Polyanion Clustered Solid-State Electrolytes via Hydrate-Assisted Synthesis for All-Solid-State Batteries

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 12. Nov., Seite e2410402
1. Verfasser: Wang, Guanzhi (VerfasserIn)
Weitere Verfasser: Zhang, Simeng, Wu, Han, Zheng, Matthew, Zhao, Changtai, Liang, Jianwen, Zhou, Liyu, Yue, Junyi, Zhu, Xiangzhen, Xu, Yang, Zhang, Nian, Pang, Tianlu, Fu, Jiamin, Li, Weihan, Xia, Yuanguang, Yin, Wen, Sun, Xueliang, Li, Xiaona
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hydrate‐assisted synthesis oxychlorides solid‐state electrolytes solid‐state lithium batteries
Beschreibung
Zusammenfassung:© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Solid-state electrolytes (SSEs) play a vital role in the development of high-energy all-solid-state batteries. However, most adopted mechanical ball milling and/or high-temperature annealing are ineffective approaches for large-scale synthesis. Herein, a universal and scalable hydrate-assisted strategy for the synthesis of oxychloride SSEs is developed based on the chemical reaction among alkali chlorides, AlCl3, and AlCl3·6H2O. The synthesized aluminum-based oxychloride SSEs possess a high Li+ conductivity over 1 mS cm-1 at 30 °C. The final aluminum-based oxychloride SSEs are structurally heterogeneous with nm-sized LiCl-like and LiAlCl4 crystallites and large amounts of amorphous [AlaObClc](2 b + c -3 a )- components. Faster local mobility of Li+ ions in amorphous structures is verified and is attributable to weakened Li+-X- interactions ensured by the [AlaObClc](2 b + c -3 a )- polyanions. The potential applications for this synthesis technique are further demonstrated by kilogram-scale reactions and synthesis of other oxychloride SSEs including zirconium-based and tantalum-based analogs. These findings not only provide a new simple, scalable, and energy-efficient synthesis route for oxychloride SSEs but also further promote their application in all-solid-state batteries
Beschreibung:Date Revised 12.11.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202410402