|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM380122138 |
003 |
DE-627 |
005 |
20250306215207.0 |
007 |
cr uuu---uuuuu |
008 |
241115s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.cej.2024.156904
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1266.xml
|
035 |
|
|
|a (DE-627)NLM380122138
|
035 |
|
|
|a (NLM)39525687
|
035 |
|
|
|a (PII)156904
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yan, Shenghan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Potential Application of Room Temperature Synthesized MIL-100(Fe) in Enhancing Methane Production in Microbial Electrolysis Cells-Anaerobic Digestion Treating Protein-Rich Wastewater
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 16.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Microbial electrolysis cell-anaerobic digestion (MEC-AD) is an emerging technology for methane production. However, low substrate degradation efficiency remains a challenge when processing protein substrates. This study developed a MIL-100(Fe) carbon cloth anode to enhance methane production and substrate degradation in MEC-AD. The effects of MIL-100(Fe) prepared under hydrothermal (H-MIL-100(Fe)) and room temperature conditions (R-MIL-100(Fe)) were compared. Results indicated that H-MIL-100(Fe) and R-MIL-100(Fe) increased cumulative methane production by 16.01% and 14.99%, respectively compared to normal cloth, each influencing methane production through distinct mechanisms. Electrochemical characterization showed that H-MIL-100(Fe) enhanced the electrochemical performance more significantly due to the enrichment of Geotalea, with the oxidation current improved by 7.39-fold (R-MIL-100(Fe) increased it by only 2.95-fold) to promote growth of Methanobacterium. Metagenomic analysis revealed that R-MIL-100(Fe) tended to metabolize amino acids into methane rather than support cellular life activities, indicating its practicality under limited substrate concentration. In summary, R-MIL-100(Fe) shows greater potential for application due to its mild synthesis conditions and advantages in treating complex substrates
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a MIL-100(Fe)
|
650 |
|
4 |
|a Methane production
|
650 |
|
4 |
|a Microbial electrolysis cell
|
650 |
|
4 |
|a Protein utilization
|
700 |
1 |
|
|a Liu, Changqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Xingguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Chunshan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Yuyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhuo, Guihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhen, Guangyin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Chemical engineering journal (Lausanne, Switzerland : 1996)
|d 1999
|g 500(2024) vom: 15. Nov.
|w (DE-627)NLM098273531
|x 1385-8947
|7 nnas
|
773 |
1 |
8 |
|g volume:500
|g year:2024
|g day:15
|g month:11
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.cej.2024.156904
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 500
|j 2024
|b 15
|c 11
|