|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM380068702 |
003 |
DE-627 |
005 |
20241115233656.0 |
007 |
cr uuu---uuuuu |
008 |
241115s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202403046
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1601.xml
|
035 |
|
|
|a (DE-627)NLM380068702
|
035 |
|
|
|a (NLM)39520347
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cojocaru-Mirédin, Oana
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Atom Probe Tomography
|b a Local Probe for Chemical Bonds in Solids
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 09.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
|
520 |
|
|
|a Atom probe tomography is frequently employed to characterize the elemental distribution in solids with atomic resolution. Here the potential of this technique to locally probe chemical bonds is reviewed and discussed. Two processes characterize the bond rupture in laser-assisted field emission, the probability of molecular ions (PMI), i.e., the probability that molecular ions are evaporated instead of single (atomic) ions, and the probability of multiple events (PME), i.e., the correlated field-evaporation of more than a single fragment upon laser- or voltage pulse excitation. Here it is demonstrated that one can clearly distinguish solids with metallic, covalent, and metavalent bonds based on their bond rupture, i.e., their PME and PMI values. These findings open new avenues in understanding and designing advanced materials, since they allow a quantification of bonds in solids on a nanometer scale, as will be shown for several examples. These possibilities would even justify calling the present approach bonding probe tomography (BPT)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a atom probe tomography
|
650 |
|
4 |
|a bond breaking
|
650 |
|
4 |
|a chalcogenides
|
650 |
|
4 |
|a field penetration depth
|
650 |
|
4 |
|a metavalent bonding
|
650 |
|
4 |
|a probability of multiple events
|
700 |
1 |
|
|a Yu, Yuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Köttgen, Jan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ghosh, Tanmoy
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schön, Carl-Friedrich
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Chongjian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wuttig, Matthias
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 09. Nov., Seite e2403046
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:09
|g month:11
|g pages:e2403046
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202403046
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 09
|c 11
|h e2403046
|