Carboxylic Acid-Functionalized Cellulose Hydrogel Electrolyte for Dual-Interface Stabilization in Aqueous Zinc-Organic Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 1 vom: 08. Jan., Seite e2411997
1. Verfasser: Zhang, Haodong (VerfasserIn)
Weitere Verfasser: Gan, Xiaotang, Gao, Yingjie, Wu, Hao, Song, Zhiping, Zhou, Jinping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aqueous zinc batteries electrode–electrolyte interface hydrogel electrolytes organic cathode materials proton uptake/removal
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Aqueous zinc batteries (AZBs) are considered one of the most promising candidates for grid-scale energy storage. However, achieving a stable electrode-electrolyte interface remains a challenge for developing high-performance AZBs. Herein, taking the Zn||phenazine (PNZ) system as a prototype, where the proton uptake/removal mechanism dominates in the cathode, a carboxylic acid-functionalized cellulose hydrogel electrolyte is designed to simultaneously solve the issues at both the anode and cathode interfaces. Specifically, the hydrogel electrolyte can not only regulate Zn2+ ions at the Zn anode side but also supply H+ ions at the PNZ cathode side to avoid the unfavored deposition of zinc sulfate hydroxides. Benefiting from the unique one-gel-for-two-electrodes strategy, the dendrite-free and side reaction-suppressed aqueous Zn||PNZ cells are developed with a high specific capacity (311 mAh g-1, 99% utilization of the theoretical capacity) and a long cycle life (over 1500 cycles within 2 months). This study proposes a facile and low-cost electrolyte strategy for stabilizing AZBs
Beschreibung:Date Revised 08.01.2025
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202411997