Learning a Cross-Modality Anomaly Detector for Remote Sensing Imagery

Remote sensing anomaly detector can find the objects deviating from the background as potential targets for Earth monitoring. Given the diversity in earth anomaly types, designing a transferring model with cross-modality detection ability should be cost-effective and flexible to new earth observatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 08., Seite 6607-6621
1. Verfasser: Li, Jingtao (VerfasserIn)
Weitere Verfasser: Wang, Xinyu, Zhao, Hengwei, Zhong, Yanfei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM380008807
003 DE-627
005 20250508052547.0
007 cr uuu---uuuuu
008 241114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3490894  |2 doi 
028 5 2 |a pubmed25n1332.xml 
035 |a (DE-627)NLM380008807 
035 |a (NLM)39514358 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jingtao  |e verfasserin  |4 aut 
245 1 0 |a Learning a Cross-Modality Anomaly Detector for Remote Sensing Imagery 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.03.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Remote sensing anomaly detector can find the objects deviating from the background as potential targets for Earth monitoring. Given the diversity in earth anomaly types, designing a transferring model with cross-modality detection ability should be cost-effective and flexible to new earth observation sources and anomaly types. However, the current anomaly detectors aim to learn the certain background distribution, the trained model cannot be transferred to unseen images. Inspired by the fact that the deviation metric for score ranking is consistent and independent from the image distribution, this study exploits the learning target conversion from the varying background distribution to the consistent deviation metric. We theoretically prove that the large-margin condition in labeled samples ensures the transferring ability of learned deviation metric. To satisfy this condition, two large margin losses for pixel-level and feature-level deviation ranking are proposed respectively. Since the real anomalies are difficult to acquire, anomaly simulation strategies are designed to compute the model loss. With the large-margin learning for deviation metric, the trained model achieves cross-modality detection ability in five modalities-hyperspectral, visible light, synthetic aperture radar (SAR), infrared and low-light-in zero-shot manner 
650 4 |a Journal Article 
700 1 |a Wang, Xinyu  |e verfasserin  |4 aut 
700 1 |a Zhao, Hengwei  |e verfasserin  |4 aut 
700 1 |a Zhong, Yanfei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 08., Seite 6607-6621  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:08  |g pages:6607-6621 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3490894  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 08  |h 6607-6621