Dynamic Transition Metal Network via Orbital Population Design Stabilizes Lattice Oxygen Redox in Stoichiometric Layered Cathodes

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 07. Nov., Seite e2412673
1. Verfasser: Gao, Ang (VerfasserIn)
Weitere Verfasser: Li, Xinyan, Zhang, Qinghua, Lin, Ting, Wang, Yichi, Chen, Yujie, Lin, Weiguang, Wang, Shiyu, Ji, Pengxiang, Luo, Zhu, Wang, Jinlong, Guo, Yanbing, Gu, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li‐ion batteries lattice oxygen redox orbital population stoichiometric layered oxides transition metal network
LEADER 01000naa a22002652 4500
001 NLM379950960
003 DE-627
005 20241114234230.0
007 cr uuu---uuuuu
008 241114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202412673  |2 doi 
028 5 2 |a pubmed24n1600.xml 
035 |a (DE-627)NLM379950960 
035 |a (NLM)39508566 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Ang  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Transition Metal Network via Orbital Population Design Stabilizes Lattice Oxygen Redox in Stoichiometric Layered Cathodes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Li-ion batteries employing stoichiometric layered Li metal oxides as cathodes are now reaching the energy density limits due to single cationic redox chemistry. Lattice oxygen redox (LOR) has been discovered in these materials, as a high-energy-density paradigm observed in Li-rich materials. Nevertheless, the origin of this process is not understood, preventing the rational design of better cathode materials. Here, employing stoichiometric Ni-based cathodes, it is demonstrated that LOR originates from a dynamic transition metal (TM) network caused by ion migration during the electrochemical process. This network is confirmed to be ribbon through both ex- and in-situ STEM observations, facilitating reversible LOR. Finally, a t2g orbital population rule is proposed to guide the design of ordered TM networks, supported by calculated structures and the synthesized ordered TM oxides reported. This work explains the mechanism of LOR in stoichiometric layered cathode materials, and sets a promising direction for the design of high-energy-density cathodes through the regulation of TM ordering 
650 4 |a Journal Article 
650 4 |a Li‐ion batteries 
650 4 |a lattice oxygen redox 
650 4 |a orbital population 
650 4 |a stoichiometric layered oxides 
650 4 |a transition metal network 
700 1 |a Li, Xinyan  |e verfasserin  |4 aut 
700 1 |a Zhang, Qinghua  |e verfasserin  |4 aut 
700 1 |a Lin, Ting  |e verfasserin  |4 aut 
700 1 |a Wang, Yichi  |e verfasserin  |4 aut 
700 1 |a Chen, Yujie  |e verfasserin  |4 aut 
700 1 |a Lin, Weiguang  |e verfasserin  |4 aut 
700 1 |a Wang, Shiyu  |e verfasserin  |4 aut 
700 1 |a Ji, Pengxiang  |e verfasserin  |4 aut 
700 1 |a Luo, Zhu  |e verfasserin  |4 aut 
700 1 |a Wang, Jinlong  |e verfasserin  |4 aut 
700 1 |a Guo, Yanbing  |e verfasserin  |4 aut 
700 1 |a Gu, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 07. Nov., Seite e2412673  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:07  |g month:11  |g pages:e2412673 
856 4 0 |u http://dx.doi.org/10.1002/adma.202412673  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 07  |c 11  |h e2412673