A principal-weighted penalized regression model and its application in economic modeling

© 2024 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 15 vom: 06., Seite 3215-3232
1. Verfasser: Sun, Mingwei (VerfasserIn)
Weitere Verfasser: Xu, Murong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Principal component analysis dimension reduction penalized regression principal-weighted variable selection
LEADER 01000caa a22002652 4500
001 NLM379937395
003 DE-627
005 20241112232524.0
007 cr uuu---uuuuu
008 241107s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2346343  |2 doi 
028 5 2 |a pubmed24n1598.xml 
035 |a (DE-627)NLM379937395 
035 |a (NLM)39507213 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Mingwei  |e verfasserin  |4 aut 
245 1 2 |a A principal-weighted penalized regression model and its application in economic modeling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This paper introduces a novel Principal-Weighted Penalized (PWP) regression model, designed for dimensionality reduction in large datasets without sacrificing essential information. This new model retains the favorable features of the principal component analysis (PCA) technique and penalized regression models. It weighs the variables in a large data set based on their contributions to principal components identified by PCA, enhancing its capacity to uncover crucial hidden variables. The PWP model also efficiently performs variable selection and estimates regression coefficients through regularization. An application of the proposed model on high-dimensional economic data is studied. The results of comparative studies in simulations and a real example in economic modeling demonstrate its superior fitting and predictive abilities. The resulting model excels in accuracy and interpretability, outperforming existing methods 
650 4 |a Journal Article 
650 4 |a Principal component analysis 
650 4 |a dimension reduction 
650 4 |a penalized regression 
650 4 |a principal-weighted 
650 4 |a variable selection 
700 1 |a Xu, Murong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 15 vom: 06., Seite 3215-3232  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:15  |g day:06  |g pages:3215-3232 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2346343  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 15  |b 06  |h 3215-3232