Bayesian extension of the Weibull AFT shared frailty model with generalized family of distributions for enhanced survival analysis using censored data

© 2024 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 15 vom: 06., Seite 3125-3153
1. Verfasser: Parvej, Mohammad (VerfasserIn)
Weitere Verfasser: Ali Khan, Athar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article AFT LOOIC STAN Type I half-logistic-G WAIC Weibull distribution censored data shared-frailty type II exponentiated half logistic-G type II half logistic-G
LEADER 01000caa a22002652 4500
001 NLM379937301
003 DE-627
005 20241112232524.0
007 cr uuu---uuuuu
008 241107s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2024.2338404  |2 doi 
028 5 2 |a pubmed24n1598.xml 
035 |a (DE-627)NLM379937301 
035 |a (NLM)39507215 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Parvej, Mohammad  |e verfasserin  |4 aut 
245 1 0 |a Bayesian extension of the Weibull AFT shared frailty model with generalized family of distributions for enhanced survival analysis using censored data 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a In survival analysis, the Accelerated Failure Time (AFT) shared frailty model is a widely used framework for analyzing time-to-event data while accounting for unobserved heterogeneity among individuals. This paper extends the traditional Weibull AFT shared frailty model using half logistic-G family of distributions (Type I, Type II and Type II exponentiated) through Bayesian methods. This approach offers flexibility in capturing covariate influence and handling heavy-tailed frailty distributions. Bayesian inference with MCMC provides parameter estimates and credible intervals. Simulation studies show improved model predictive performance compared to existing models, and real-world applications demonstrate its practical utility. In summary, our Bayesian Weibull AFT shared frailty model with Type I, Type II and Type II exponentiated half logistic-G family distributions enhances time-to-event data analysis, making it a versatile tool for survival analysis in various fields using STAN in R 
650 4 |a Journal Article 
650 4 |a AFT 
650 4 |a LOOIC 
650 4 |a STAN 
650 4 |a Type I half-logistic-G 
650 4 |a WAIC 
650 4 |a Weibull distribution 
650 4 |a censored data 
650 4 |a shared-frailty 
650 4 |a type II exponentiated half logistic-G 
650 4 |a type II half logistic-G 
700 1 |a Ali Khan, Athar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 15 vom: 06., Seite 3125-3153  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:15  |g day:06  |g pages:3125-3153 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2024.2338404  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 15  |b 06  |h 3125-3153