Breaking Mass Transport Limit for Hydrogen Evolution-Inhibited and Dendrite-Free Aqueous Zn Batteries
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 1 vom: 05. Jan., Seite e2410244 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2025
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Zn battery high mass loading mass transport limit metal batteries pulsed current |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. It is commonly accepted that batteries perform better at low current densities below the mass-transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut-off capacities exceeding the mass-transport limit by using pulsed-current protocols. These protocols achieve cumulative plating/stripping capacities of 11.0 Ah cm-2 and 3.8 Ah cm-2 at record-high current densities of 80 and 160 mA cm-2, respectively. The study identifies and understands the promoted (002)-textured Zn growth and suppressed hydrogen evolution based on the thermodynamics and kinetics of competing reactions. Furthermore, the over-limiting pulsed-current protocol enables long-life Zn batteries with high mass loading (29 mgcathode cm-2) and high areal capacity (7.9 mAh cm-2), outperforming cells using constant-current protocols at equivalent energy and time costs. The work provides a comprehensive understanding of the current-capacity-performance relationship in Zn plating/stripping and offers an effective strategy for dendrite-free metal batteries that meet practical requirements for high capacity and high current rates |
---|---|
Beschreibung: | Date Revised 08.01.2025 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202410244 |