From Dashboard Zoo to Census : A Case Study With Tableau Public

Dashboards remain ubiquitous tools for analyzing data and disseminating the findings. Understanding the range of dashboard designs, from simple to complex, can support development of authoring tools that enable end-users to meet their analysis and communication goals. Yet, there has been little work...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 06. Nov.
1. Verfasser: Srinivasan, Arjun (VerfasserIn)
Weitere Verfasser: Purich, Joanna, Correll, Michael, Battle, Leilani, Setlur, Vidya, Crisan, Anamaria
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM379908220
003 DE-627
005 20241107232939.0
007 cr uuu---uuuuu
008 241107s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3490259  |2 doi 
028 5 2 |a pubmed24n1593.xml 
035 |a (DE-627)NLM379908220 
035 |a (NLM)39504284 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Srinivasan, Arjun  |e verfasserin  |4 aut 
245 1 0 |a From Dashboard Zoo to Census  |b A Case Study With Tableau Public 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Dashboards remain ubiquitous tools for analyzing data and disseminating the findings. Understanding the range of dashboard designs, from simple to complex, can support development of authoring tools that enable end-users to meet their analysis and communication goals. Yet, there has been little work that provides a quantifiable, systematic, and descriptive overview of dashboard design patterns. Instead, existing approaches only consider a handful of designs, which limits the breadth of patterns that can be surfaced. More quantifiable approaches, inspired by machine learning (ML), are presently limited to single visualizations or capture narrow features of dashboard designs. To address this gap, we present an approach for modeling the content and composition of dashboards using a graph representation. The graph decomposes dashboard designs into nodes featuring content "blocks'; and uses edges to model "relationships", such as layout proximity and interaction, between nodes. To demonstrate the utility of this approach, and its extension over prior work, we apply this representation to derive a census of 25,620 dashboards from Tableau Public, providing a descriptive overview of the core building blocks of dashboards in the wild and summarizing prevalent dashboard design patterns. We discuss concrete applications of both a graph representation for dashboard designs and the resulting census to guide the development of dashboard authoring tools, making dashboards accessible, and for leveraging AI/ML techniques. Our findings underscore the importance of meeting users where they are by broadly cataloging dashboard designs, both common and exotic 
650 4 |a Journal Article 
700 1 |a Purich, Joanna  |e verfasserin  |4 aut 
700 1 |a Correll, Michael  |e verfasserin  |4 aut 
700 1 |a Battle, Leilani  |e verfasserin  |4 aut 
700 1 |a Setlur, Vidya  |e verfasserin  |4 aut 
700 1 |a Crisan, Anamaria  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 06. Nov.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:06  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3490259  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 06  |c 11