Constructing an Active Sulfur-Vacancy-Rich Surface for Selective *CH3-CH3 Coupling in CO2-to-C2H6 Conversion With 92% Selectivity

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 37(2025), 1 vom: 06. Jan., Seite e2412299
1. Verfasser: Yang, Xiaonan (VerfasserIn)
Weitere Verfasser: Ren, Liteng, Chen, Zhiheng, Li, Huiquan, Yuan, Yupeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article *CH3‐CH3 coupling S vacancies ethane photocatalytic CO2 reduction reaction
LEADER 01000caa a22002652c 4500
001 NLM379885263
003 DE-627
005 20250306211746.0
007 cr uuu---uuuuu
008 241106s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202412299  |2 doi 
028 5 2 |a pubmed25n1265.xml 
035 |a (DE-627)NLM379885263 
035 |a (NLM)39501991 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Xiaonan  |e verfasserin  |4 aut 
245 1 0 |a Constructing an Active Sulfur-Vacancy-Rich Surface for Selective *CH3-CH3 Coupling in CO2-to-C2H6 Conversion With 92% Selectivity 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a To achieve high selectivity in photocatalytic CO2 reduction to C2+ products, increasing the number of CO2 adsorption sites and lowering the energy barriers for key intermediates are critical. A ZnIn2S4 (ZIS)/MoO3-x (Z-M) photocatalyst is presented, in which plasmonic MoO3-x generates hot electrons, creating a multielectron environment in ZIS that facilitates efficient C─C coupling reactions. Density functional theory (DFT) calculations reveal that MoO3-x reduces the formation energy of sulfur vacancies (SV) in ZIS, thereby enhancing CO2 adsorption and activation. The SV-rich surface lowers the energy barrier for forming HCOO* to -0.33 eV whereas the energy barrier for forming *COOH is 0.77 eV. Successive hydrogenation of HCOO* leads to *CH2, which converts to *CH3 with an energy barrier of -0.63 eV. The energy barrier for *CH3-CH3 coupling is 0.54 eV, which is lower than the 0.73 eV for *CH2-CH2 coupling to form *C2H4. Thus, Z-M preferentially produces C2H6 over C2H4. Under visible light, Z-M achieves a CO2-to-C2H6 conversion rate of 467.3 µmol g-1 h-1 with 92.0% selectivity. This work highlights the dual role of plasmonic photocatalysts in enhancing CO2 adsorption and improving C2+ production in CO2 reduction 
650 4 |a Journal Article 
650 4 |a *CH3‐CH3 coupling 
650 4 |a S vacancies 
650 4 |a ethane 
650 4 |a photocatalytic CO2 reduction reaction 
700 1 |a Ren, Liteng  |e verfasserin  |4 aut 
700 1 |a Chen, Zhiheng  |e verfasserin  |4 aut 
700 1 |a Li, Huiquan  |e verfasserin  |4 aut 
700 1 |a Yuan, Yupeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 37(2025), 1 vom: 06. Jan., Seite e2412299  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:37  |g year:2025  |g number:1  |g day:06  |g month:01  |g pages:e2412299 
856 4 0 |u http://dx.doi.org/10.1002/adma.202412299  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2025  |e 1  |b 06  |c 01  |h e2412299