Lateral Phase Heterojunction for Perovskite Microoptoelectronics
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 05. Nov., Seite e2409201 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article contact diffusion lithography lateral phase heterojunction micro‐optoelectronics perovskite light‐emitting diode |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Perovskite heterojunction engineering is the prerequisite but still a deficiency in the fabrication of micro-optoelectronic devices, where the present top-down or bottom-up techniques mainly focus on preparing the vertical heterojunction stacks. Perovskite lateral heterojunction structures generally rely on epitaxial growth, which cannot meet the demands of mass production of micro-devices. Here, a contact diffusion lithography technique is proposed to demonstrate a perovskite lateral phase heterojunction (LPH) polycrystalline film by ion-driven local phase transition. Under the guidance of thermodynamic simulations, methylamine contact and migration collectively promote in situ formation of α-phase formamidine-based perovskite patterns surrounded by δ-phase polymorphs. Spontaneous type-I heterojunction alignment between α- and δ-phases establishes energy funnels in the LPH film to facilitate carrier utilization and radiative recombination. The wide-bandgap δ-phase also serves as the coplanar isolator to achieve local anti-leakage for device integration. Based on the bright and stable LPH pattern layer, the near-infrared microscale perovskite light-emitting diode (micro-PeLED) with impressive device performance is achieved by following conventional device fabrication protocol. The proposed LPH enriches the perovskite heterojunction family, creates a new optoelectronic processing platform, and advances its versatile applications in micro-optoelectronics and photonics |
---|---|
Beschreibung: | Date Revised 05.11.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202409201 |