Unraveling the in planta population dynamics of the plant pathogen Ralstonia pseudosolanacearum by mathematical modeling

© 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - (2024) vom: 04. Nov.
1. Verfasser: Baroukh, Caroline (VerfasserIn)
Weitere Verfasser: Gerlin, Léo, Escourrou, Antoine, Genin, Stéphane
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article R. solanacearum growth in xylem sap macroscopic modeling plant pathogen population dynamics tomato xylem sap xylem‐mimicking medium
LEADER 01000naa a22002652 4500
001 NLM37983927X
003 DE-627
005 20241105233404.0
007 cr uuu---uuuuu
008 241105s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.20216  |2 doi 
028 5 2 |a pubmed24n1591.xml 
035 |a (DE-627)NLM37983927X 
035 |a (NLM)39497371 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Baroukh, Caroline  |e verfasserin  |4 aut 
245 1 0 |a Unraveling the in planta population dynamics of the plant pathogen Ralstonia pseudosolanacearum by mathematical modeling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 The Author(s). New Phytologist © 2024 New Phytologist Foundation. 
520 |a Ralstonia pseudosolanacearum, a plant pathogen responsible for bacterial wilt in numerous plant species, exhibits paradoxical growth in the host by achieving high bacterial densities in xylem sap, an environment traditionally considered nutrient-poor. This study combined in vitro experiments and mathematical modeling to elucidate the population dynamics of R. pseudosolanacearum within plants. To simulate the xylem environment, a tomato xylem-mimicking medium was developed. Then, a mathematical model was constructed using in vitro data and employed to simulate the dynamics of bacterial density and xylem sap composition during plant infection. The model accurately reproduced in planta experimental observations, including high bacterial densities and the depletion of glutamine and asparagine. Additionally, the model estimated the minimal number of bacteria required to initiate infection, the timing of infection post-inoculation, the bacterial mortality rate within the plant and the rate at which bacterial putrescine is assimilated by the plant. The findings demonstrate that xylem sap can sustain high bacterial densities, provides an explanatory framework for the presence of acetate, putrescine and 3-hydroxybutyrate in the sap of infected xylem and give clues as to the role of putrescine in the virulence of R. pseudosolanacearum 
650 4 |a Journal Article 
650 4 |a R. solanacearum 
650 4 |a growth in xylem sap 
650 4 |a macroscopic modeling 
650 4 |a plant pathogen 
650 4 |a population dynamics 
650 4 |a tomato xylem sap 
650 4 |a xylem‐mimicking medium 
700 1 |a Gerlin, Léo  |e verfasserin  |4 aut 
700 1 |a Escourrou, Antoine  |e verfasserin  |4 aut 
700 1 |a Genin, Stéphane  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g (2024) vom: 04. Nov.  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g year:2024  |g day:04  |g month:11 
856 4 0 |u http://dx.doi.org/10.1111/nph.20216  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 04  |c 11